
 Task Management for Irregular Workloads on the GPU

Stanley Tzeng, Anjul Patney, and John D. Owens

Introduction
Motivation:
We explore software mechanisms for managing irregular
tasks on graphics processing units. Traditional GPU
programming guidelines teaches us how to efficiently
program the GPU for data parallel pipelines with regular
input and output. We present a strategy for solving task
parallel pipelines which can handle irregular workloads on
the GPU.

Four Key Concepts:
• Warp size work granularity – 1 warp processes 1 task.
• Persistent thread scheduler emulation – threads return

to the top of the kernel to fetch more work.
• Uberkernel processor utilization – Combine multiple

pipeline stages into one kernel to eliminate explicit
kernel barriers.

• Task donation memory management – each block has
its own dequeue of work to be processed, when the
dequeue is full, it may spill over to other blocks.

Application Example:
To demonstrate our task parallel system in action, we
developed a real time Reyes rendering engine to showcase
our work.

Warp Size Work Granularity Results Uberkernels

Persistent Threads Task Donation Memory Management

Streaming
Multiprocessor

P P P

Problem: We want to emulate task level parallelism on the GPU
without loss in efficiency.

Solution: We choose block sizes of 32 threads / block. Choosing
this size has two major advantages for us:

• Removes messy synchronization barriers. This is especially
important when used in conjunction with Persistent Threads.

• Can view each block as a MIMD thread where the execution is
independent of other blocks, maintaining the efficiency of
SIMD execution while giving us MIMD style granularity. We
call these blocks processors. Several processors can reside on
a SM.

Streaming
Multiprocessor

P P P

Streaming
Multiprocessor

P P P

Problem: Want to eliminate global kernel barriers for better
processor utilization.
Solution: Use the Uberkernel programming model. Uberkernels
pack multiple execution routes into one kernel, effectively going
through multiple stages of the pipeline within one kernel. When
can pack multiple kernels into one kernel, we eliminate the explicit
barrier and overhead between kernel launches.

Pipeline Stage 1

Pipeline Stage 2

Data Flow

Barrier

Uberkernel

Stage 1

Stage 2

Data Flow
switch(data.inst)
{
case KERNEL1:
 runKernel1();
 break;
case KERNEL2:
 runKernel2();
 break;
}

Problem: If input is irregular? How many threads do we
launch?
Solution: Launch enough to keep the GPU busy, and keep
them alive so they keep fetching work. This allows irregular
workloads to be generated and processed all within the same
kernel.

Spawn
Fetch
Data

Process
Data

Write
Output

Death

Life of a Thread

Spawn
Fetch
Data

Process
Data

Write
Output

Death

Life of a Persistent Thread

Go back and keep fetching work
until there is no more work left!

Problem: We need to ensure that our processors are constantly
working and not idle.
Solution: Design a software memory management system. The goal of
our memory management system is to ensure that all processors can
get work quickly.
Task Donation:
We develop a task donation memory management system. Each
processor is given a dequeue (called a bin)in which it takes and stores
work units, when that bin is full, the processor may spill generated
work to another processor’s bin. When a processor’s bin is empty, it
may steal work from another processor’s bin.

P1 P2 P3 P4

This processor ‘s bin is full and donates
its work to someone else’s bin

This processor ‘s bin is empty and
takes work from a neighboring bin.

Bins

Processors

References
ARORA N. S., BLUMOFE R. D., PLAXTON C. G.:
Thread scheduling for multiprogrammed multiprocessors. In
Proceedings of the Tenth Annual ACM Symposium on Parallel
Algorithms and Architectures (June/July 1998), pp. 119–129

AILA T., LAINE S.: Understanding the efficiency of ray
traversal on GPUs. In Proceedings of High Performance Graphics
2009 (Aug. 2009), pp. 145–149.

BLUMOFE R. D., LEISERSON C. E.: Scheduling multithreaded
computations by work stealing. Journal of the ACM 46,
5 (Sept. 1999), 720–748.

CEDERMAN D., TSIGAS P.: On dynamic load-balancing
on graphics processors. In Graphics Hardware 2008 (June 2008),
pp. 57–64.

HEIRICH A., ARVO J.: A competitive analysis of load
balancing strategies for parallel ray tracing. The Journal of Supercomputing
12, 1-2 (Jan. 1998), 57–68.

ZHOU K., HOU Q., REN Z., GONG M., SUN X.,
GUO B.: RenderAnts: Interactive Reyes rendering on GPUs.
ACM Transactions on Graphics 28, 5 (Dec. 2009), 155:1–155:11.

TATARINOV A., KHARLAMOV A.: Alternative rendering
pipelines using NVIDIA CUDA. Talk at SIGGRAPH
2009, http://developer.nvidia.com/object/
siggraph-2009, Aug. 2009.

Conclusion
We have demonstrated how to build a system on the GPU that can deal
with irregular workloads on a task size granularity. With our system we
built a Reyes rendering pipeline which can achieve real time
framerates.

Novelty:
Our work is the first to combine a work-donation approach for work
queue management with Uberkernel and persistent thread
programming styles to exploit task parallelism and handle irregular
workloads.

Future Work:
In the future we hope to explore how newer GPU hardware can help
our hardware, asFermis are known to have much faster atomics than its
predecessor. We hope that these advancements in hardware will allow
us to explore further abstractions and models for designing different
pipelines on the GPU.

A GPU Task-Based Irregular
Workload Model

Idle Iterations

25000

200

Block
Queue

Dist.
Queue

Task
Stealing

Task
Donation

Lock
Contention

Idle Waiting

About the
same performance

About the
same performance

This graph shows our task donation memory scheme in terms of idle
iterations. We define an idle iteration as any one processor either
waiting for a lock or waiting for other processors to finish before it can
terminate. Our scheme is roughly the same as a previous task stealing
scheme, but it uses less memory. For more experiments and results,
please see our paper.

REYES:
As an application of our work, we demonstrate how our system can be
used to implement an alternative rendering pipeline on the GPU: the
Reyes Pipeline. Its highly irregular workload in several stages of its
pipeline forms an ideal testing ground for our work. We are able to
achieve real time frame rates of ~20fps on the majority of our models
using a single GeForce GTX 280. Please see our talk, “Real-time Reyes:
Programmable Rendering on Graphics Processors” on Wednesday 5pm.

