
Deriving Parallelism and GPU Acceleration 
Of Algorithms With Inter-Dependent Data Fields

** A Substitute for Building Sparse Connection Matrix and Sparse Matrix-Vector Multiplication **

Jaideep Singh, Ipseeta Aruni, Indian Institute of Technology Roorkeee, INDIA

Abstract

This poster presents an approach to

derive parallelism in algorithms that

involve building sparse matrix that

represents relationships between inter-

dependent data fields and enhancing its

performance on the GPU. This work

compares the algorithm performance on

the GPU to its CPU variant that employs

the traditional sparse matrix-vector

multiplication (SpMV) approach. We have

also compared our algorithm performance

with CUSP SpMV [1] on GPU. The

softwares used in this work are MATLAB

and Jacket – GPU engine for MATLAB [2].

Introduction

To introduce the concept, we consider a

problem from Power System Engineering

domain. In this study, we consider a

system of ‘N’ buses or nodes and variable

number of generators connected at each

bus. The aim is to compute the total

power generation at each bus using

generator power generation data. This is

one of the starting steps in performing the

Power Flow study. Power Flow study is

performed to determine :

• Power flows and voltages in a system

• Power flows are within equipment ratings

• Voltages are within acceptable operating 

limits

Power Flow studies are performed for

normal as well as contingency operating

conditions.

A power system with variable

generators and load at each bus

Classical Approach

This is done building a sparse connection matrix that

has a non-zero value corresponding to generator

connected at a particular bus. Let us assume that the

system has 3 nodes and 5 generators with generator

data given as:

To compute total power generated at each bus, we

build a connection matrix of size 3x5 as follows:

Sparse Connection Matrix

This matrix is built as a sparse matrix storing only the

non-zero elements and corresponding indices. This

sparse matrix when multiplied with the power

generation vector gives the total power generation at

each bus. This approach involves an additional

multiply operation per non-zero element but the

desired result is addition of data fields to give

total power generation.

We have devised a technique to do this in parallel

without using sparse matrix approach. This is useful in

Power Flow study as well as other algorithms

exhibiting similar behavior.

Generator Bus Number Power Generation 

(MW)

1 1 20.09

2 1 30.52

3 2 40.80

4 2 20.34

5 3 10.03

Bus Gen1 Gen2 Gen3 Gen4 Gen5

1 1 1 0 0 0

2 0 0 1 1 0

3 0 0 0 0 1

Why GPUs in  Power Flow Studies

• For a power system composed of thousands of buses and

lines, to successfully compute the power flow in real time for

these types of systems requires high computational

throughput.

• Previous approaches to parallelize the power flow

algorithms have been in the form of deploying

heterogeneous network of workstations [3, 4] for real-time

applications. These required specialized hardware and

could not be commercialized due to investment constraints.

• On the other hand, commodity computer graphics

processing units (GPU) are probably today’s most powerful

computational hardware per dollar installed on general

purpose PC [5].

Our Algorithm : Par4Sp

To perform the same operation without building

connection matrix and sparse matrix-vector

multiplication, we build two vectors, viz. noOfGen and

cumNoOfGen. This is demonstrated in the following

diagram :

Parallel

threads

compute

total power

generation

If we launch threads equal to number of buses, each

thread can now fetch the generator count from noofGen

for the number of times it has to loop (fetch generation

data and add) and the starting location in the generator

data is given by the cumNoOfGen vector. This

technique avoids any additional multiply inherent in the

spare matrix approach.

int idx = blockDim.x * blockIdx.x + threadIdx.x; 
if ( idx >= noOfBuses ) 
return; 

float2 temp = make_float2( 0.0f, 0.0f ); 

int ntimes = noOfGen[idx];
int pos       = cumNoOfGen[idx] -1; 

for ( int i = 0 ; i < ntimes ; ++i ) 
{

// Pg and Qg hold real and reactive power
temp = cuCaddf ( temp, make_float2( Pg[pos],  Qg[pos]) ); 
pos++;
} 

Improved Par4Sp

Improved Par4Sp has enhanced performance and

well adapted for GPU for the following reasons :

• Synchronization-free parallelism between thread

blocks : Allocation of one thread per bus to compute

total power generation at that bus independent of

other buses in which a one-dimensional grid of thread

blocks and a one-dimensional block of threads are

used.

• Optimized Global Memory Access : A special data

matrix stores the power generation corresponding to

each generator as shown below:

Maximum generator count

Threads

in a warp

access

consecutive

data 

elements

• Optimized thread mapping : Sorted noOfGen

vector allows for threads in a warp to have similar 

computation load.

Bus noOfGen cumNoOfGen

1 2 1

2 2 3

3 1 5

Scope for Improvement

• This approach suffers from uncoalesced memory

access patterns that limits the performance of Par4Sp.

• Due to random nature of generator count, threads in a

warp have unbalanced computation load.

• The noOfGen vector is sorted to have nearly

balanced computation load for threads in a warp.

• A special matrix containing power generation of each

generator is maintained that allows coalesced memory

access for threads in a warp.

Bus 

Number

Power

Generation 

(MW)

Power 

Generation

(MW)

1 20.09 30.52

2 40.80 20.34

3 10.03 x

Performance and Conclusion

Par4Sp was tested in MATLAB. The GPU version was

coded using JACKET SDK tools [6]. MATLAB supports

sparse matrices and allows sparse matrix-vector

multiplication. We have also compared Par4Sp

performance with CUSP, an optimized library for sparse

matrix linear algebra on GPU. Number of generators and

power generation values were randomly generated for

each case. The following table shows the simulation

results and the speedup obtained using Par4Sp and

CUSP SpMV over CPU SpMV in MATLAB.

The above results demonstrate remarkable speedup for

computing power generation on GPU. Compared with

the MATLAB CPU version, Par4Sp is nearly 280 times

faster for large power systems and outperforms CUSP

SpMV on GPU, thus speeding up Power Flow studies

and acting as a suitable substitute for similar problems.

Buses

(N)

% Non-zero(nz) 

elements

= ( nz /(N*N))

Time(ms) 

MATLAB

CPU: EE2200

@2.2GHz

Time(ms)

CUSP SpMV

GPU : Tesla 

C1060

Time(ms)

Par4Sp

GPU : Tesla 

C1060

Speedup

CUSP SpMV

Speedup

Par4Sp

1000 5.4242 2.5678 0.108 0.053 23.77 48.449

2000 5.4511 9.5352 0.231 0.095 41.27 100.37

3000 5.9413 23.153 0.496 0.158 46.679 146.53

4000 5.7415 46.563 0.662 0.199 70.336 233.98

5000 5.6068 67.596 0.994 0.242 68.02 279.32

References : 

[1] http://code.google.com/p/cusp-library/

[2] http://wiki.accelereyes.com/wiki/index.php?title=Main_Page

[3] V. C. Ramesh, "On distributed computing for on-line power system applications," International Journal of   

Electrical Power & Energy Systems, vol. 18, 1996, pp. 527-533. 

[4] N. Balu, T. Bertram, A. Bose, V. Brandwajn, G. Cauley, D. Curtice, A. Fouad, L. Fink, M. G. Lauby, B. F. 

Wollenberg, and J. N. Wrubel, "Online Power-System Security Analysis," Proceedings of the IEEE, vol.  

80, 1992, pp. 262-280. 

[5] N. Govindaraju, M. Harris, J. Krüger, A. E., Lefohn, and T. J. Purcell. ―A Survey of General-Purpose 

Computation on Graphics Hardware‖ In Eurographics 2005, State of the Art Reports, August 2005, pp. 21-51. 

[6] http://wiki.accelereyes.com/wiki/index.php/Jacket_SDK We express our gratitude to the AccelerEyes team for their support

Load

Generator

0

50

100

150

200

250

300

1000 2000 3000 4000 5000

S

P

E

E

D

U

P

SYSTEM SIZE: NUMBER OF BUSES

Speedup of Par4Sp and CUSP SpMV 
over MATLAB SpMV

CUSP SpMV

Par4Sp

280x

http://code.google.com/p/cusp-library/
http://code.google.com/p/cusp-library/
http://code.google.com/p/cusp-library/
http://code.google.com/p/cusp-library/
http://wiki.accelereyes.com/wiki/index.php?title=Main_Page
http://wiki.accelereyes.com/wiki/index.php/Jacket_SDK

