
Accelerating CUDA Graph Algorithms at Maximum Warp

Pervasive Parallelism Laboratory, Stanford University
Sungpack Hong, Tayo Oguntebi, Kunle Olukotun

Graph Algorithms Rationale: Warp-Based ExecutionOur approach: Methods for efficiently addressing irregularly shaped graphs

Results

Contact information

Warp-Based ExecutionDeferring High Fan-out

• Detect large-sized works and

put those works into a queue

• Deferred works are processed in

subsequent kernel calls.

• Concurrent queues can be implemented reasonably cheaply,

if they either only grow or decrease during a given phase.

[pros] Less imbalance

[cons] Multiple kernel calls

E-mail

• {hongsup, tayo} @ stanford.edu

Introduction: Graph Algorithms

• Many interesting problems are constructed using graphs:

social networks, supply chain analysis, genealogy, …

• However, those problems are often immense in size: even

simple algorithms take significant amounts of time on such

large graphs

• Parallelism is required for faster execution.

• Challenge: Interesting graph instances are usually

irregularly shaped .

Conventional Approaches

• Theory researchers have concentrated on abstract PRAM

(Parallel Random Access Machine) algorithms; however, real

commodity machine implementations are rare.

• Clusters are not favored due to their huge communication

overhead. Partitioning irregular graphs is also difficult.

• PRAM machines have been implemented as supercomputers

(e.g. cray-xmt). But they are expensive and hard to access.

Future Work

Performance Comparisons

• Implemented in conjunction with warp-based execution

• Instantiate only as many Thread-Blocks as the number of SMs

• Dynamically allocate workloads per warp from a work queue

[pros] Prevents SMs from stalling for one long-running warp

[cons] Work queue overhead

Dynamic Workload Distribution

Previous Work: Graph Algorithms on GPU

• Implementations of PRAM algorithms on GPUs [1, 2]

• Key observation: GPU architecture is a miniature replica of a

PRAM supercomputer.

Let each thread process one parallel task. (e.g. one

thread per node operation)

Exploit parallelism and higher memory bandwidth.

• Problem: Performs badly for irregular graphs

• Example: Find BFS ordering of nodes from a source node.

(Frontier expansion method)

Algorithm consists of multi-staged kernel calls

Each stage expands frontiers by one level

__global__ BFS_Kernel(…) { n = tid; …

if (order[n] == curr_level)

for(j = nbrs[begin[n]] to nbrs[end[n]])

if (order[j] == INF)

order[j] = curr_level + 1

}

s

1

2

Two major issues for irregular graphs

[A] Execution path divergence (varying numbers of neighbors)

[B] Scattered memory access pattern (no address coalescing)

S
M

em

S
M

em

S
M

em

S
M

em

GPU Memory

[GPU Architecture]

Thread Blocks

[Conventional

Programming Model]

1 Stream Processor = N Cuda cores

• Actual thread execution is not exactly PRAM

Threads in a warp  unit of SIMD

Warps in a thread-block  unit of SMT

Thread-blocks  unit of multi-processing

• Therefore…explicitly utilize those traits

• Assign a chunk of jobs to each warp.

• Each warp performs those jobs serially.

• Each warp uses its 32 threads to perform

SIMD operations.

• Each warp can own a private SMEM

partition.

• Synchronization is inherent.
[Warp-based Programming Model]

Thread Blocks

Warp-private SMEM

device Add_Queue (Q, n, items)

{ old = atomicAdd(Q.idx, n)

cpy(&Q.data[old], items, n)

}

• Each warp processes a chunk of nodes, serially

• A warps utilize its threads for SIMD operations.

(Or for very short SIMT operations only)

[pros] Coalesced memory access.

No stall due to divergence

[cons] Under-utilization unless enough SIMD operations

• Further study of effectiveness of warp-based

approach

• On other graph algorithms

• On other applications having similar workload

imbalance issue

• Automatic Generation for Warp-Based Kernels

• User description  SIMD kernels and calls

(e.g. SIMD update_nbr in our example)

• C Macros or Compiler front-end

global BFS_kernel2(…) { _shared_ sOrder[];

n = w_id = tid / (WARP_SZ);

w_off = tid % (WARP_SZ); .

SIMD_CPY(sOrder, order[n], WARP_SZ, w_off);

for(i = 0 ; i < WARP_SZ; i++)

if (sOrder[i] == curr_level) {

SIMT_update_nbr(nbrs, begin[n], end[n],

w_off, …)

} }

References

device SIMT_update_nbr (...)

{ for (i= begin+w_off; i<end; i+=WARP_SZ) {

j = nbrs[i];

if (order[j] == INF)

order[j] = level + 1

} }

0

5

10

15

20

25

30

35

RMAT Random Journal Patents

Baseline Baseline+ Defer Warp

Warp+ Defer Warp+ Dynamic

Speedup

• Speedup over single-threaded CPU version

• Our baseline GPU implementation is optimized over [1] by 20%

Summary

[A] Warp-based execution results in good speed-up for irregular graphs

[B] Underutilization issue can be addressed by using Sub-warps

Type # Nodes # Edges Shape

RMAT Generated [1] 4 x10 6 48 x10 6 Irregular

Random Generated [1] 4 x10 6 48 x10 6 Regular

Journal Real-world data [3] 4,308,451 68,993,773 Irregular

Patents Real-world data [3] 1,765,311 10,564,104 Regular

Properties of Input Graphs

0

5

10

15

20

25

30

35

40

RMAT Random Journal Patents

Warp4 Warp8 Warp16 Warp32 Baseline+Defer

Speedup

Sub-warp based execution
(Fixing under-utilization Issue)

Effect of defer-threshold

0

200

400

600

800

1000

1200

1400

0 5000 10000 15000 20000

Baseline-Defer Warp-Defer

Execution Time (ms)

Threshold for Deferrence (Degree)

[1] P Harish and P Narayanan, Accelerating Large Graph Algorithms

on the GPU using CUDA [HiPC 2007]

[2] F Dehne and K Yogaratnan, Exploring the Limits of GPUs with

Parallel Graph Algorithms [arxiv preprint 2010]

[3] Stanford Network Analysis Platform, http://snap.stanford.edu

[4] Small-world Network Analysis and Partitioning, http://snap-

graph.sourceforge.net/

0

5

10

15

20

25

30

35

RMAT Random Journal Patents

CPU1 CPU2 CPU4 CPU8 Baseline+Defer Warp

Speedup

Comparisons to multi-threaded CPU
implementation [4]

CPU: Intel Xeon E5345 2.33GHz, 32GB

GPU: Nvidia GTX260 1.24GHz, 1GB

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05 1.E+06 1.E+07

CPU Baseline Baseline+Defer

Warp Warp+Defer Warp+Dynamic

nodes [RMAT graph]

Execution Time (ms)

Execution time over size of graph

