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Graph Algorithms Rationale:  Warp-Based ExecutionOur approach:  Methods for efficiently addressing irregularly shaped graphs
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Warp-Based ExecutionDeferring High Fan-out

• Detect large-sized works and 

put those works into a queue

• Deferred works are processed in 

subsequent kernel calls.

• Concurrent queues can be implemented reasonably cheaply,  

if they either only grow or decrease during a given phase. 

[pros] Less imbalance

[cons] Multiple kernel calls
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Introduction:  Graph Algorithms

• Many interesting problems are constructed using graphs: 

social networks, supply chain analysis, genealogy, …

• However, those problems are often immense in size: even 

simple algorithms take significant amounts of time on such 

large graphs

• Parallelism is required for faster execution. 

• Challenge:  Interesting graph instances are usually 

irregularly shaped .

Conventional Approaches

• Theory researchers have concentrated on abstract PRAM 

(Parallel Random Access Machine) algorithms; however, real 

commodity machine implementations are rare. 

• Clusters are not favored due to their huge communication 

overhead.  Partitioning irregular graphs is also difficult.

• PRAM machines have been implemented as supercomputers 

(e.g. cray-xmt). But they are expensive and hard to access.

Future Work

Performance Comparisons

• Implemented in conjunction with warp-based execution 

• Instantiate only as many Thread-Blocks as the number of SMs

• Dynamically allocate workloads per warp from a work queue

[pros] Prevents SMs from stalling for one long-running warp

[cons] Work queue overhead

Dynamic Workload Distribution

Previous Work:  Graph Algorithms on GPU

• Implementations of PRAM algorithms on GPUs [1, 2]

• Key observation:  GPU architecture is a miniature replica of a 

PRAM supercomputer.

Let each thread process one parallel task. (e.g. one 

thread per node operation)

Exploit parallelism and higher memory bandwidth.

• Problem:  Performs badly for irregular graphs

• Example:  Find BFS ordering of nodes from a source node.

(Frontier expansion method)

Algorithm consists of multi-staged kernel calls

Each stage expands frontiers by one level

__global__ BFS_Kernel(…) { n = tid; …

if (order[n] == curr_level)

for( j = nbrs[begin[n]] to nbrs[end[n]])

if (order[j] == INF)

order[j] = curr_level + 1

}
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Two major issues for irregular graphs

[A] Execution path divergence (varying numbers of neighbors)

[B] Scattered memory access pattern (no address coalescing)
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GPU Memory

[GPU Architecture]

Thread Blocks

[Conventional 

Programming Model]

1 Stream Processor =  N Cuda cores

• Actual thread execution is not exactly PRAM

Threads in a warp  unit of SIMD

Warps in a thread-block  unit of SMT

Thread-blocks  unit of multi-processing

• Therefore…explicitly utilize those traits

• Assign a chunk of jobs to each warp.

• Each warp performs those jobs serially.

• Each warp uses its 32 threads to perform

SIMD operations.

• Each warp can own a private SMEM 

partition.

• Synchronization is inherent.
[Warp-based  Programming Model]

Thread Blocks

Warp-private SMEM

_device_ Add_Queue (Q, n, items)

{  old = atomicAdd(Q.idx, n)

cpy( &Q.data[old], items, n)

}

• Each warp processes a chunk of nodes, serially

• A warps utilize its threads for SIMD operations.

(Or for very short SIMT operations only)

[pros] Coalesced memory access. 

No stall due to divergence

[cons] Under-utilization unless enough SIMD operations

• Further study of effectiveness of warp-based 

approach

• On other graph algorithms

• On other applications having similar workload 

imbalance issue

• Automatic Generation for Warp-Based Kernels

• User description  SIMD kernels and calls

(e.g. SIMD update_nbr in our example)

• C Macros or Compiler front-end

_global_ BFS_kernel2(…) { _shared_ sOrder[];

n = w_id = tid / (WARP_SZ); 

w_off = tid % (WARP_SZ); .

SIMD_CPY(sOrder, order[n], WARP_SZ, w_off);

for( i = 0 ; i < WARP_SZ; i++)

if (sOrder[i] == curr_level) {

SIMT_update_nbr(nbrs, begin[n], end[n], 

w_off, …)

} }

References

_device_ SIMT_update_nbr (...) 

{ for (i= begin+w_off; i<end; i+=WARP_SZ) {

j = nbrs[i];

if (order[j] == INF)

order[j] = level + 1

} }
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RMAT Random Journal Patents

Baseline Baseline+ Defer Warp

Warp+ Defer Warp+ Dynamic

Speedup

• Speedup over single-threaded CPU version

• Our baseline GPU implementation is optimized over [1] by 20%

Summary

[A] Warp-based execution results in good speed-up for irregular graphs

[B] Underutilization issue can be addressed by using Sub-warps

Type # Nodes # Edges Shape

RMAT Generated [1] 4  x10 6 48 x10 6 Irregular

Random Generated [1] 4  x10 6 48 x10 6 Regular

Journal Real-world data [3] 4,308,451 68,993,773 Irregular

Patents Real-world data [3] 1,765,311 10,564,104 Regular

Properties of Input Graphs
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Sub-warp based execution
(Fixing under-utilization Issue)

Effect of defer-threshold
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Comparisons to multi-threaded CPU 
implementation [4] 

CPU: Intel Xeon E5345 2.33GHz, 32GB

GPU: Nvidia GTX260 1.24GHz, 1GB
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