Implementation of Adaptive Cross Approximation on NVIDIA GPUs

Georgia | Research
Tech M sttt

| —

(ntroduction \

* The Method of Moments (MoM) has been a popular choice among engineers
for solving electrodynamic scattering problems for many years now.

* Here we discuss acceleration of the MoM scattering problem for conducting
bodies. The governing integral equations are the Electric Field Integral
Equation (EFIE) given by

B (7)yn = 704 (7) + VO (7)

tan

and the Magnetic Field Integral Equation given by

] —Jg“) ﬁx][T(7) x VG (7.7) dS'. 7€ S.
S

C

which can be combined to form the Combined Field Integral Equation
aEFIE + 1 (1 — o) MFIE

* In traditional formulations, the solution of a dense linear system is required.
The matrix fill time is O(N4) while the solution time is O(N?3).

* Recently, several fast methods have been proposed to reduce the complexity
of the fill and solve times such as Fast Multipole Method (FMM), Adaptive
Integral Method (AIM), and Adaptive Cross Approximation (ACA).

* These methods can reduce solution complexity as low as O(NlogN).

* GPU acceleration of these methods yields substantial gains in time now
making it practical to solve very large systems on personal workstations.

* Here we propose a method for applying GPUs to the acceleration of the ACA
including a novel procedure for direct solution of the system of equations

Atlanta, GA 30318, USA

-
GPU Acceleration of ACA Matrix Fill

* Goalis to accelerate matrix fill/compression while storing full compressed
matrix in host memory

* ACA algorithm done on CPU
* On CPU, primary computation time is row and column computation
* Row/column generation done on GPU

* (Calculate and ship back to CPU

* One thread per matrix element

* ACA requires many vector dot products, norms, abs, max value search, etc.
* Do this on CPU due to communication cost and small data size

* Favor computation over communication

* Each thread calculates necessary triangle areas, edge lengths, basis
transformations, etc.

* Avoids multiple memory reads

* Unstructured meshes lead to difficulties in ensuring coalesced reads

\ via a compressed LDU decomposition. /

/Overview of Adaptive Cross
Approximation

* Matrix compression algorithm for matrices
exhibiting low-rank sub-blocks

* Blocks formed by creating disjoint groups of basis
functions

* Compressibility determined primarily by distance

* Blocks are compressed using incomplete pivoted
LU decompostion

* Compression can be >99%

* Compressed form also yields reduced operation
counts for *GEMV, *GEMM type operations

* Partitioned matrix due to grouping

11 o1 | L1z 214
y—

* Low rank matrices can be compressed as

Zaag1 = UV —— U™k VX | < [m,n]

_ i

-

-
ACA Matrix Fill Results

* Comparisons based on Core 17 920 with ATLAS BLAS+LAPACK and NVIDIA
GeForce GTX 480 (Fermi architecture) using CUDA 3.1

* It should be noted that variation in average group size for the ACA may yield
different speed-up results. Larger groups result in less communication
overhead for the GPU whereas this is not such a concern for the CPU.

* Results for a 1m radius sphere illuminated by a plane wave. Results are
speed-up for matrix fill only.

975 MHz - 48741 Unknowns

1075 MHz - 59508 Unknowns

100 200 300 400 500
Number of Groups

100 150 200 250 300 350
Number of Groups

* For spheres, maximum speed-up is
achieved for ~120 groups at both
frequencies.

1m Radius - 35m Length
300 MHz - 78618 Unknowns

* Results for a cylinder (shown at
right) illustrate differences
compressibility and how this affects
GPU performance versus CPU.

* Cylinder geometry is “less-coupled”
than sphere, and so GPU benefits
from larger group sizes (fewer
groups) with maximum speed-up Nunoer of Groups

N ~25 groups.

AN

| Tyler N. Killian, Daniel L. Faircloth, R. Todd Lee, and James G. Maloney
Signature Technology Laboratory, Georgia Tech Research Institute

PROBLEM. SOLVED.

.

GPU Acceleration of ACA-based LDU Decomposition A
* ACA matrix fill typically followed by iterative solution
* Unacceptable for applications involving many right hand sides (RCS)
* Using ACA algorithm, possible to form compressed LDU decomposition
* Block Equations Do = Zm.m — mz_:l Tozn 1500 ol
k=1
Lonn = |Zmm — ni Ly x Di Uk | Dy Ui, = Do | Bhior — Wf Loyt D kU
k=1 k=1

o

Computation dominated by summation term

Compressed matrix representation

Lk De Uk = Ur,, Vi, . DecUv, Vo,

CPU approach relies on matrix vector multiplies to form rows and columns
for ACA in order to minimize memory and computation complexity.

CGEMM better “bang for the buck” than CGEMYV in terms of GFLOPs

Can we just form the fully decompressed L or U blocks on GPU, ship back to
CPU, and run ACA algorithm by picking and choosing rows/columns as
needed?

Minimum operations count:

Ut . ((Vi, . (DexUu,) Vue)

* Vi Di iUy
m,k))
DkakUUkz,n * Vin..DexUu, Vo, .,

VUk,n x
ULm,k
T S

Transferto .covivi TransfertoGPU ~ GGEMM Transterto ..oy iy

GPU GPU

.
ACA LDU Decomposition Results

J

Maximum speed-up for LDU decomposition of 1m radius sphere occurs
~120-150 groups. This is similar to matrix fill case although speed-up is
much higher in the case of LDU decomposition.

975 MHz - 48741 Unknowns

1075 MHz - 59508 Unknowns

200 300 400
Number of Groups

50 100 150 200 250
Number of Groups

.
Conclusions C

GPU acceleration of ACA MoM makes solution of “real
world” problems practical on personal workstations. Vv

As an example, the notional cruise missile has
118242 unknowns, ACA+GPU fill: 15 mins 25 secs,
ACA+GPU LDU: 35 mins 20 secs ¢

