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Challenges

 GPU/CPU hybrid operations
 Distribution of work between CPU and GPU
 Some operations are inherently serial

 GPU restrictions
 Restrictions on dynamic loops
 Restrictions on texture memory writes

 GPU performance guidelines
 Coherent memory reads
 Branchless kernels
 Reduced data read-back from GPU

 Multiple GPU vendors
 Algorithms should run on any massively 

parallel architecture
 Should be easy to port to many-core 

architecture

 GPU acceleration strategy
 Construct bounding box hierarchies
 Map sets of 4 boxes from each surface at each level of 

hierarchy to a min/max distance texture
 Find set of potentially-close bounding-boxes at this level
 Refine to the finer level
 GPU acceleration effective when number of potentially-

close bounding-boxes increase at lower levels

 Minimum distance computation
 Linearize the surface patches inside the finest level of 

potentially-close bounding-boxes with triangles
 Find the minimum distance between these triangles

Above: Bounding –Box hierarchy used in the minimum distance 

computation algorithm.

Right: Minimum distance computation algorithm overview

Bounding Boxes for NURBS Surfaces Surface Minimum Distance Computations Timing Results

Object Clearance Computations Object Clearance Results Conclusions

Strategies

 Separation of CPU/GPU 
operations
 Example: NURBS evaluations

 Imposing artificial structure 
to the computations
 Example: Surface minimum 

distance computations

 Separating problem into 
multiple stages
 Example: Object clearance 

computations
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GPU NURBS Evaluation Algorithm Intermediate output while 

computing basis function

 Two step operation
 Evaluate basis function values in multiple passes
 Multiply basis function values with control points to get surface coordinates

 Strategies
 Ping-pong technique to overcome dynamic loop limitation of older GPUs
 Perform loop operations on the CPU and perform the only the multiplication 

operation in the GPU kernel
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 Build bounding-boxes for NURBS surfaces to 
accelerate geometric operations
 Use grid of points on surface already evaluated
 Find min, max x, y, & z coordinate of four adjacent points and build the 

basic bounding-box
 Find the maximum possible deviation, K of the actual surface from a 

piecewise-linear approximation
 Expand the size of the bounding-box by K, which will guarantee that the 

bounding-box contains the surface

Steps in creating bounding-boxes 

for NURBS surfaces
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Parametric Space

M1 = Max(∂2S/∂u2)

M2 = Max(∂2S/∂u ∂v)

M3 = Max(∂2S/∂v2)

 Graphs comparing NURBS evaluation 
times for different implementations on 
two different graphics cards

 Implementations tested
 CUDA
 CUDA with texture memory (CUDA Textures)
 CUDA without ping-pong (CUDA NoPP)
 GPGPU (OpenGL)
 GPGPU with texture packing (OpenGL Packed)
 GPGPU without ping-pong (OpenGL NoPP)
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 Two-stage computations
 Voxel-based first stage

 Voxelize the object using the coarse tessellation 
used for display

 Find list of potentially-close voxel pairs

 Surface-based second stage
 Create a list of potentially-close surfaces that 

intersect the potentially-close voxel pairs
 Compute minimum distance between the surfaces

Surfaces intersecting potentially-close 

voxel pairs

Surface minimum distance 

computation

Map voxels to rows and columns of a 

Min/Max distance texture

Serial Operations

Serial Operations

Parallel Operations

GPU Programming Insights

 Dramatic performance gains
 Frequently orders of magnitude improvement
 But requires GPU-optimized algorithms

 Hybrid CPU/GPU algorithms
 Some parts of algorithms are inherently serial
 Use CPU in such cases for better work-load balancing

 Guaranteed user-specified tolerances
 Enables direct adoption of GPU algorithms in CAD

 GPU framework
 Reduces development time for new algorithms
 Helps in performance tuning and optimization

Proposed GPU framework for CAD algorithms
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Minimum-Distance Closest-Point Position

 Interactive minimum distance computations
 Using NVIDIA Quadro FX5800
 One surface interactively rotated and translated with respect to a fixed 

surface
 Average computation time : 0.11s
 Tolerance bounds were < 0.01 for all computations

NURBS Surfaces used for 

timing
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