
GPU Algorithms for NURBS Minimum Distance and Clearance Computations
Adarsh Krishnamurthy, Sara McMains

University of California, Berkeley

GPU-Algorithm Development NURBS Evaluation NURBS Evaluation Results

Computer-Aided Design and Manufacturing Laboratory, Mechanical Engineering Department, University of California, Berkeley

Challenges

 GPU/CPU hybrid operations
 Distribution of work between CPU and GPU
 Some operations are inherently serial

 GPU restrictions
 Restrictions on dynamic loops
 Restrictions on texture memory writes

 GPU performance guidelines
 Coherent memory reads
 Branchless kernels
 Reduced data read-back from GPU

 Multiple GPU vendors
 Algorithms should run on any massively

parallel architecture
 Should be easy to port to many-core

architecture

 GPU acceleration strategy
 Construct bounding box hierarchies
 Map sets of 4 boxes from each surface at each level of

hierarchy to a min/max distance texture
 Find set of potentially-close bounding-boxes at this level
 Refine to the finer level
 GPU acceleration effective when number of potentially-

close bounding-boxes increase at lower levels

 Minimum distance computation
 Linearize the surface patches inside the finest level of

potentially-close bounding-boxes with triangles
 Find the minimum distance between these triangles

Above: Bounding –Box hierarchy used in the minimum distance

computation algorithm.

Right: Minimum distance computation algorithm overview

Bounding Boxes for NURBS Surfaces Surface Minimum Distance Computations Timing Results

Object Clearance Computations Object Clearance Results Conclusions

Strategies

 Separation of CPU/GPU
operations
 Example: NURBS evaluations

 Imposing artificial structure
to the computations
 Example: Surface minimum

distance computations

 Separating problem into
multiple stages
 Example: Object clearance

computations

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pass 1

Pass 2

Pass 3

Pass 4

u v

u

v

Basis Functions Control Mesh Evaluation Mesh

ku kv

n

m

kv

ku

GPU NURBS Evaluation Algorithm Intermediate output while

computing basis function

 Two step operation
 Evaluate basis function values in multiple passes
 Multiply basis function values with control points to get surface coordinates

 Strategies
 Ping-pong technique to overcome dynamic loop limitation of older GPUs
 Perform loop operations on the CPU and perform the only the multiplication

operation in the GPU kernel

K K

K
K

1 2 32 2

1 1 2 1

8
K M M M

n nm m

 
   

 

[Filip et al. 1986]

 Build bounding-boxes for NURBS surfaces to
accelerate geometric operations
 Use grid of points on surface already evaluated
 Find min, max x, y, & z coordinate of four adjacent points and build the

basic bounding-box
 Find the maximum possible deviation, K of the actual surface from a

piecewise-linear approximation
 Expand the size of the bounding-box by K, which will guarantee that the

bounding-box contains the surface

Steps in creating bounding-boxes

for NURBS surfaces

n

m

Parametric Space

M1 = Max(∂2S/∂u2)

M2 = Max(∂2S/∂u ∂v)

M3 = Max(∂2S/∂v2)

 Graphs comparing NURBS evaluation
times for different implementations on
two different graphics cards

 Implementations tested
 CUDA
 CUDA with texture memory (CUDA Textures)
 CUDA without ping-pong (CUDA NoPP)
 GPGPU (OpenGL)
 GPGPU with texture packing (OpenGL Packed)
 GPGPU without ping-pong (OpenGL NoPP)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 200000 400000 600000 800000 1000000 1200000

E
v
a
lu

a
ti

o
n

 T
im

e
 (

s
)

Number of Points

CUDA CUDA NoPP CUDA Textures

OpenGL Packed OpenGL OpenGL NoPP

NVIDIA GeForce 9600M GT

0

0.005

0.01

0.015

0.02

0.025

0.03

0 200000 400000 600000 800000 1000000 1200000

E
v
a
lu

a
ti

o
n

 T
im

e
 (

s
)

Number of Points

CUDA CUDA NoPP OpenGL

CUDA Textures OpenGL Packed OpenGL NoPP

NVIDIA Quadro FX5800

1
0 1

2 3

0 1

2 3

Level 2

Bounding Box

Hierarchy 1

Min/Max Distance Texture

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

3

0 1

2 3

0 1

2 3

Bounding Box

Hierarchy 2

0

2

1

3
0 1

2 3

0

2

= Distance Range

0

Max KEY

C
P

U
/G

P
U

 D
a

ta
 T

ra
n

s
fe

r

Min Reduce

Min/Max Distances

Parallel Find

Non-Uniform

Stream

Reduction

Potentially Close

AABBs

Upper bound of

Minimum Distance

Bounding-Boxes

within Range

Ref ine to

Finer Level

0 0

0 1

1 0

1 2

1 3

Min/Max Distances

Map

List of Voxels

 Two-stage computations
 Voxel-based first stage

 Voxelize the object using the coarse tessellation
used for display

 Find list of potentially-close voxel pairs

 Surface-based second stage
 Create a list of potentially-close surfaces that

intersect the potentially-close voxel pairs
 Compute minimum distance between the surfaces

Surfaces intersecting potentially-close

voxel pairs

Surface minimum distance

computation

Map voxels to rows and columns of a

Min/Max distance texture

Serial Operations

Serial Operations

Parallel Operations

GPU Programming Insights

 Dramatic performance gains
 Frequently orders of magnitude improvement
 But requires GPU-optimized algorithms

 Hybrid CPU/GPU algorithms
 Some parts of algorithms are inherently serial
 Use CPU in such cases for better work-load balancing

 Guaranteed user-specified tolerances
 Enables direct adoption of GPU algorithms in CAD

 GPU framework
 Reduces development time for new algorithms
 Helps in performance tuning and optimization

Proposed GPU framework for CAD algorithms

Hybrid CPU/GPUTraditional

Serial

Computation

CPU GPUMap

Parallel

Computation

Reduce

Display

ReadPair 1

Pair 2

Pair 3

Pair 4

Pair 5

0.00001

0.0001

0.001

0.01

0.1

1

ACIS (CPU) GPU

T
o

le
ra

n
c

e
 (
lo

g
 s

c
a

le
)

3453x

1938x

727x

463x

408x

Computation Time Computed Tolerance Bounds

0.00

0.05

0.10

0.15

0.20

0.25

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s

)

Interactive Runs
1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

T
o

le
ra

n
c

e
 (
fr

a
c

ti
o

n
 o

f
m

o
d

e
l-

s
iz

e
)

Interactive Runs

Minimum-Distance Closest-Point Position

 Interactive minimum distance computations
 Using NVIDIA Quadro FX5800
 One surface interactively rotated and translated with respect to a fixed

surface
 Average computation time : 0.11s
 Tolerance bounds were < 0.01 for all computations

NURBS Surfaces used for

timing

Pair 1

Pair 2

Pair 3

Pair 4

Pair 5

0

50

100

150

200

250

300

ACIS (CPU) GPU

T
im

e
 (
s

e
c

o
n

d
s

)

331x

104x

185x

39x

10x

