
•kfkkf

CUDA Implementation of Barrier Option Valuation using
Jump-Diffusion Process and Brownian Bridge

GPU Technology Conference 21-23 September 2010, San Jose, California

Introduction

What is a Barrier Option?

Jump-Diffusion Processes

The Brownian Bridge

Results

Conclusions

The pace and volume of market
trading have both steadily
increased in recent years. The
need for fast accurate
approaches to valuation of
complex financial instruments has
never been greater. GPUs present
an attractive option for
accelerating these calculations.
Monte Carlo valuation in particular
maps well to the GPU architecture
as independent trajectories can
be associated with independent
threads.

The purpose of this work is to
evaluate the performance of
GPU computing on a valuation
model with elevated complexity.
We follow the methodology first
proposed by Metwally and Atiya,
which addresses barrier options
using an underlying jump-
diffusion process and a Brownian
bridge. We have developed
optimized CPU and GPU
implementations of the algorithm
described by Metwally and have
compared the performance.

Dariusz Murakowski William Brouwer William Lynch Vincent Natoli

 Tesla C1060 GPU performance
15x-35x over quad core Nehalem

 Same Statistical Accuracy

A barrier option’s value depends on the price trajectory of the underlying
asset. If the price falls below the barrier, H, at any time then the option pays
out a rebate value R. If the price of the underlying option does not cross the
barrier at any time up to the expiration time TE then its value is max(STE – X),
where X is the strike price of the option.

We include a Poisson distributed jump model in addition to the diffusion
model of price movement. The jump model takes account of rare market
events. Jumps occur in time intervals that are Poisson distributed. The jump
value itself is normally distributed.

In between jumps prices move according to the Brownian diffusion model. If
the asset price at the end of the diffusion interval is above the barrier, there is
still a chance that it diffused through the barrier somewhere in the interval.
This is accounted for using the Brownian bridge model which considers the
first passage time of a diffusion process as well as the distribution of crossing
times which may be calculated analytically.

Total Time vs Number of Monte Carlo runs. For
large numbers of runs best results are found
using the Mersenne Twister Random Number
Generator on the GPU. GPU performance is
more than 20x faster than CPU for a wide
range of N.

Total Speedup of GPU implementation over
CPU for Mersenne Twister and LCG64 RNG.
We observe GPU performance exceeding
CPU performance by up to 35x using the
Mersenne Twister RNG. For very large N
performance was about 15x greater than
CPU.

Total run time vs standard deviation of the
mean for GPU and CPU using Mersenne
Twister and LCG64 RNGs. For cases where it
is desired to reach a certain std dev., we
show here that the GPU is significantly faster.

	Slide Number 1

