
ASR Characteristics and Software Architecture 

Challenge 1: 

Handling irregular data structures with 
data-parallel operations 

Solution 1: 

Construct efficient dynamic vector data 
structure to handle  
irregular data 
accesses 

Challenge 2: 

Eliminating redundant work when threads 

are computing results for an unpredictable 

subset of the problems based on input 

Solution 2: 

Implement efficient find-unique function 
by leveraging the GPU global memory 
write-conflict-resolution policy 

Challenge 3: 

Conflict-free reduction in graph traversal  

to implement the Viterbi beam-search 

algorithm 

Solution 3: 

Implement lock-free accesses of a  
shared map leveraging advanced GPU 
atomic operations to enable conflict-free 
reductions  

Challenge 4: 

Parallel construction of a shared queue 

while avoiding sequential bottlenecks  

when atomically accessing queue control 

variables 

Solution 4: 

Use of hybrid local/global atomic 
operations and local buffers for the 
construction of a shared global queue to 
avoid sequential bottlenecks in accessing  
global queue control variables 
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Automatic Speech Recognition (ASR)  Results 
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!"Automatic speech recognition (ASR) allows 
multimedia content to be transcribed from 
acoustic waveforms to word sequences 

!"This is a challenging task as there can be 
exponentially many ways to interpret an 
utterance (a sequence of  phones) into words 

!"ASR uses the hidden Markov model (HMM) 

•" States are hidden because phones are indirectly 
observed through the waveform 

•" Must infer the most likely interpretation while 
taking the language model into account 

!"The Viterbi algorithm is used to 
infer the most likely interpretation 
of  the observed waveform 

•" It has a forward pass and a 

backward pass 

!"The forward pass has two phases 
of  execution 

•" Phase 1 evaluates the observation 

probability, which matches the 
observation to known speech model 

states (dashed arrows) 

•" Phase 2 references historic 
information and evaluates the 

likelihood of  going from one time 
step to the next (solid arrows) 
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!" In the forward pass of the Viterbi algorithm, there are 1,000s to 10,000s of 

concurrent tasks that represent the most likely alternative interpretations of the 

input being tracked 

!"To track these alternative interpretations, one has to reference a selected subset of  

data from the WFST Recognition Network with a sparse irregular graph structure 

!"The concurrent access of irregular data structure requires “uncoalesced” memory 

accesses in the middle of important algorithm steps, which degrades performance 

!" Instantiate a Phase 0 in the 

implementation to gather all 

operands necessary for the current 

time step of the algorithm 

!"Caching them in a memory-

coalesced runtime data structure 

allows any uncoalesced accesses 

to happen only once for the full time 

step 

Figure illustrates the various 

components of a speech model 

that are compiled together off-
line with Weighted Finite State 

Transducer (WFST) techniques 

to form a flat probabilistic finite 

state machine. 

The network often contains 

millions of states and tens of 

millions of arcs. At runtime, only 

a small (<1%) subset of the 

recognition network is 
referenced at any one time step. 

!" In a recognition network, there are millions 

of states, each labeled with one of ~3,000 

tied triphone labels 

!" In a typical recognition sequence, only 

20% of the triphone states are used for 

observation probability computation 

!"During traversal many of the states being 

tracked have duplicate labels 

!" In a sequential execution, memoization is 

often used to avoid redundant 

computation 

!"What do we do for data-parallel platforms? 

An Observation!A State!
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  Legends:!

  Model size for a WFST language model!

A Pruned State!

  # states: 4 million,  # arcs: 10 million,  # observations: 100/sec#
  Average # active states per time step: 10,000 – 20,000!
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Real Time Factor shows the number of seconds 

required to process one second of input data  

!"The traditional approach for finding unique 

elements in a list involves  

•" Sorting the list 

•" Detecting consecutive identical elements 

•" Scanning to identify unique element indices 

•" Copying out unique elements 

!"Sorting is an computationally expensive 

step on highly parallel platforms 

!"For scenarios where the number of  

possible labels is within 100,000, one can  

create a hash table of all possible labels 

!"We leverage the semantics of conflicting  

non-atomic write of the GPU to use the hash table as a flag array: 

•" CUDA guarantees at least one conflicting write to a device memory location to be 

successful, which is enough to build a flag array 

!"The alternative “Hash Insertion” step greatly simplifies the find-unique operation 

!"During graph traversal, active states are being  

processed by parallel threads on different cores 

!"Write-conflicts frequently arise when threads  

are trying to update the same destination states 

!"To further complicate things, in statistical inference, 

we would like to only keep the most likely result 

!"Efficiently resolving these write conflicts while keeping 

just the most likely result for each state is essential for achieving good performance 

A section of a Weighed Finite State Transducer 
Network 
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!"CUDA offers atomic operations with various  

flavors of arithmetic operations 

!"The “atomicMax” operation is ideal for  

statistical inference on GPU  

!"By using it in all threads, the final result in each atomically accessed memory 

location will be the maximum of all results that was attempted to be written to that 

memory location 

!"This type of access is lock-free from the software perspective, as the write-conflict 

resolution is performed by hardware 

!"Atomically writing results in to a memory location is a process of reduction 

!"Hence, this process is performing a conflict-free reduction 

Mem 
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!"When many threads are trying to  

insert tasks into a global task queue, 

significant serialization occurs at the  

point of the queue control variables 

!"By using hybrid global/local queues,  

we can eliminate the single point of  

serialization 

!"Each multiprocessor can build up 

its local queue using local atomic  

operations, which have much lower 

latency than the global atomic operations 

!"The writes to the shared global queue  

are performed in one batch process, and 

thus are significantly more efficient 

!"An ASR application extracts features from a 
waveform, compares them to the recognition 
network, and infers the most likely word 
sequence  

!"The recognition network is compiled off-line 
from a variety of  knowledge sources and 
trained using powerful statistical learning 
techniques  

!"The inference process traverses a graph-based 
recognition network using the Viterbi 
algorithm 

!"This architecture is modular and flexible: 

•" It can be adapted to recognize different 
languages by swapping in different 
recognition networks and different speech 
feature extractors, the inference engine 
would remain unchanged 

!"The fine-grained concurrency in 
ASR lies in the evaluation of  each 
algorithmic step in Phase 1 and 
Phase 2:  

•" The algorithm typically tracks 

10,000 – 20,000 alternative 
interpretations (or active states) at 

the same time 

!"The various components of  the 
recognition network can be 
composed using Weighted Finite 
State Transducer  (WFST) 
techniques 

•" Models typically contain millions of  

states and tens of  millions of  arcs 

!"The software architecture of  the 
inference process is defined 
above:  

•" There is an iterative outer loop that 

examines one input observation 
(corresponding to a 10ms time 

step) at a time 

•" The two phases of  execution 

dominate each iteration 

•" Concurrency lies in each algorithm 
steps in the two phases 

!"The software architecture presents 
significant challenges when 
implemented on the GPU, see 
below for details 
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I=)2J#!"The speech model is taken from the SRI 
CALO real time meeting recognition system 

!"The acoustic model includes 52K triphone 
states clustered into 2,613 mixtures of  
128 Gaussian components 

!"The pronunciation model contains 59K 
words with 80k pronunciations 

!"A small back-off  bigram language model 
with 167k bigram transitions was used 

!"Results presented are based on:  

•" Manycore: GTX280 GPU, 1.296GHz, 1GB 

•" Sequential: Core i7 920, 2.66GHz, 6GB 

!"The accuracy achieved for CPU and GPU 
implementations are identical 

Key Lessons 
!"Challenge 1:  

•" Having the freedom to improve the data layout of  
the runtime data structures is crucial to effectively 
exploit the fine-grained concurrency in ASR 

!"Challenge 2:  

•" An effective sequential algorithm often cannot be 

directly translated into a parallel algorithm, e.g. 

Memoization does not have an equivalent efficient 

parallel form, the sort-and-filter approach for finding 

unique element in a list has to be dramatically modified 

to execute efficiently on a GPU 

!"Challenge 3:  

•" Hardware atomic operation support is extremely 
important for highly parallel application 
development 

•" Various flavors of  atomic instructions with 
arithmetic and logic operations enable highly 
efficient implementations for statistical inference 
problems in machine learning based applications 

!"Challenge 4:  

•" Local synchronization scope important to leverage for 

relieving global synchronization bottlenecks 

!"An order of  magnitude speed up was achieved as compared to a 
SIMD optimized sequential implementation running on one core 
of  Core i7 processor 

!"The compute intensive phase was accelerated by 17.7x 

!"The communication intensive phase was accelerated by 3.7x 

•" Synchronization overhead is dominating execution time as we 

leverage more computing platform parallelism 


