
Parallel 3D Geometric Multigrid Solver on GPU Clusters
Dana Jacobsen and İnanç ŞenocakCollege of Engineering

Objective: Investigate the performance and scalability of a

multigrid pressure Poisson equation solver running on a GPU cluster.

Multigrid Algorithm

 cycle(γ, uk, f, v1, v2)

Smooth v1 times
Compute residual rk = f – L uk

Restrict residual rk-1 = R rk

Compute approximate solution vk-1:

 “Direct Solve” if lowest level, otherwise

Repeat γ times: cycle(γ, 0, rk-1, v1, v2)
Prolongate correction: uk = uk + P vk-1

Smooth v2 times

Acknowledgments: ■ NASA Idaho Space Grant Consortium ■ NVIDIA Professor Partnership Program ■ NCSA grant #ATM100032

Method: A parallel 3D multigrid pressure solver was written for

GIN3D, a 3D incompressible Navier-Stokes flow solver which runs on

GPU clusters. Tests were performed using the well-known lid-driven

cavity and natural convection in a cavity problems.

Solver:
 For pressure Poisson equation in incompressible Navier-Stokes

flow solver.

 Typically consumes a majority of the time.

 Simple iterative solvers such as Jacobi and Gauss-Seidel can run

very efficiently on the GPU, but solutions converge very slowly.

Multigrid methods can converge rapidly and allow convergence to

be relatively independent from the grid size, which is important for

large computational meshes.

Plotting residual reduction for a

single timestep. Multigrid V-

cycles were repeated as needed

to lower the residual to machine

precision. Similarly, the Jacobi

solver was iterated repeatedly.

As the grid size increases, O(N2)

iterative solvers take excessively

long to reduce the error. In

contrast, the multigrid solver

shows much better performance.

This chart compares different

smoothers inside the multigrid

implementation. Again, residual

reduction is plotted against time,

and shown for both a single

S1070 GPU and a GTX 470

(Fermi).

While Red-Black Gauss-Seidel

takes fewer iterations, and SOR

even fewer, the particular Jacobi

implementation is more efficient

in time on the S1070.

In contrast, the same kernels

running on a GTX 470 (Fermi)

show SOR as slightly more

efficient. All solvers are faster on

the new architecture.

V-cycles

γ = 1 γ = 2

W-cycles

Different overlapping strategies as

well as cycle types are compared.

Overlapping device computation,

device/host memory transfers,

and MPI network communication

is at least as important with

multigrid methods as with simple

iterative ones. Maximizing

overlap with CUDA streams is

particularly effective.

While V-cycles are faster at the

start, the coarse grid solver used

isn’t effective enough to keep

them efficient, so W-cycles are

asymptotically superior for this

example.

Details of the overlapping strategies are shown in the 2009 NVIDIA GTC poster and 2010 AIAA

paper by the authors.

 No overlap: computation followed by synchronous exchange.

 Simple overlap: Compute edges, do async MPI exchange while computing middle.

 Streams overlap: Use CUDA Streams to asynchronously overlap computation, host / device

memory transfers, and network communication.

Multigrid Implementation
Four kernels: Laplacian, Restriction (full-weighting), Smooth (Jacobi

or Red-Black Gauss-Seidel), and Prolongation.

The simple parallel multigrid

implementation which always has

some data on each GPU (and

does not repartition) has its

truncation level restricted by the

number of GPUs. With a simple

fixed iteration coarse grid solver,

the time taken grows rapidly.

As the number of GPUs grows, a

strategy such as amalgamation

(grouping work from multiple

GPUs to one for coarse grids),

semi-coarsening (reduction in

fewer than all three dimensions),

repartitioning, or some

combination is needed.

Changing the problem size for weak scaling results in significantly different convergence

behavior with truncated multigrid. The weak scaling analysis of multigrid is much more complex

than for iterative solvers.

V-cycles W-cycles

1 GPU 100% 100%

8 GPUs 18% 14%

64 GPUs 41% 21%

Below: Percent of time spent in

computation vs. copy + network

communication.

Question:
Which of these parameters are most important to tune? Truncation

level, cycle type, smoother type, method for coarsest grid solve.

Conclusions:
Multigrid on GPUs can be effective and efficient.

Multigrid performance significantly benefits from deeper

truncation levels.

 The Fermi architecture makes a difference in relative smoother

performance.

Coarsest level operations have a large impact on cluster

scalability.

Jacobi (20 iterations) after 4.7s Multigrid after 4.7s After 59 seconds

