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Objective: Investigate the performance and scalability of a 

multigrid pressure Poisson equation solver running on a GPU cluster.

Multigrid Algorithm

 cycle(γ, uk, f, v1, v2)

Smooth v1 times
Compute residual rk = f – L uk

Restrict residual rk-1 = R rk

Compute approximate solution vk-1:

 “Direct Solve” if lowest level, otherwise

Repeat γ times: cycle(γ, 0, rk-1, v1, v2)
Prolongate correction: uk =  uk + P vk-1

Smooth v2 times
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Method: A parallel 3D multigrid pressure solver was written for 

GIN3D, a 3D incompressible Navier-Stokes flow solver which runs on 

GPU clusters.  Tests were performed using the well-known lid-driven 

cavity and natural convection in a cavity problems.

Solver:
 For pressure Poisson equation in incompressible Navier-Stokes 

flow solver.

 Typically consumes a majority of the time.

 Simple iterative solvers such as Jacobi and Gauss-Seidel can run 

very efficiently on the GPU, but solutions converge very slowly.

Multigrid methods can converge rapidly and allow convergence to 

be relatively independent from the grid size, which is important for 

large computational meshes.

Plotting residual reduction for a 

single timestep.  Multigrid V-

cycles were repeated as needed 

to lower the residual  to machine 

precision.  Similarly, the Jacobi 

solver was iterated repeatedly.

As the grid size increases, O(N2) 

iterative solvers take excessively 

long to reduce the error.  In 

contrast, the multigrid solver 

shows much better performance.

This chart compares different 

smoothers inside the multigrid 

implementation.  Again, residual 

reduction is plotted against time, 

and shown for both a single 

S1070 GPU and a GTX 470 

(Fermi).

While Red-Black Gauss-Seidel 

takes fewer iterations, and SOR 

even fewer, the particular Jacobi 

implementation is more efficient 

in time on the S1070.

In contrast, the same kernels 

running on a GTX 470 (Fermi) 

show SOR as slightly more 

efficient.  All solvers are faster on 

the new architecture.

V-cycles

γ = 1 γ = 2

W-cycles

Different overlapping strategies as 

well as cycle types are compared.

Overlapping device computation, 

device/host memory transfers, 

and MPI network communication  

is at least as important with 

multigrid methods as with simple 

iterative ones.  Maximizing 

overlap with CUDA streams is 

particularly effective.

While V-cycles are faster at the 

start, the coarse grid solver used 

isn’t effective enough to keep 

them efficient, so W-cycles  are 

asymptotically superior for this 

example.

Details of the overlapping strategies are shown in the 2009 NVIDIA GTC poster and 2010 AIAA 

paper by the authors.

 No overlap:  computation followed by synchronous exchange.

 Simple overlap: Compute edges, do async MPI exchange while computing middle.

 Streams overlap: Use CUDA Streams to asynchronously overlap computation, host / device 

memory transfers, and network communication.

Multigrid Implementation
Four kernels:  Laplacian, Restriction (full-weighting), Smooth (Jacobi 

or Red-Black Gauss-Seidel), and Prolongation.

The simple parallel multigrid 

implementation which always has 

some data on each GPU (and 

does not repartition) has its 

truncation level restricted by the 

number of GPUs.  With a simple 

fixed iteration coarse grid solver, 

the time taken grows rapidly.

As the number of GPUs grows, a 

strategy such as amalgamation 

(grouping work from multiple 

GPUs to one for coarse grids), 

semi-coarsening (reduction in 

fewer than all three dimensions), 

repartitioning, or some 

combination is needed.

Changing the problem size for weak scaling results in significantly different convergence  

behavior with truncated multigrid.  The weak scaling analysis of multigrid is much more complex 

than for iterative solvers.

V-cycles W-cycles

1 GPU 100% 100%

8 GPUs 18% 14%

64 GPUs 41% 21%

Below: Percent of time spent in 

computation vs. copy + network 

communication.

Question:
Which of these parameters are most important to tune?  Truncation 

level, cycle type, smoother type, method for coarsest grid solve.

Conclusions:
Multigrid on GPUs can be effective and efficient.

Multigrid performance significantly benefits from deeper 

truncation levels.

 The Fermi architecture makes a difference in relative smoother 

performance.

Coarsest level operations have a large impact on cluster 

scalability.

Jacobi (20 iterations) after 4.7s Multigrid after 4.7s After 59 seconds


