
Ruairi M. Nestor1, Gilles Civario1, Libor Lobovsky2, Nathan J. Quinlan2
1: Irish Centre for High-End Computing, The Tower, Trinity Technology & Enterprise Campus, Grand Canal Quay, Dublin 2, Ireland
2: Mechanical and Biomedical Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland

The Finite Volume Particle Method
Computational Fluid Dynamics (CFD) is a numerical flow analysis technique.
Traditional CFD methods rely on a fixed mesh of control volumes to represent
the fluid. Mesh-based methods can be problematic for problems with moving
walls or interfaces because special procedures are needed to deform the mesh.

The Finite Volume Particle Method (FVPM) [1] is a novel mesh-free method for
Computational Fluid Dynamics (CFD). In mesh-free CFD, the fluid is
represented by a set of moving particles. Mesh-free methods are better suited
to problems with moving wall boundary conditions and interfaces than traditional
mesh-based methods.

Results
The performance of the developed CUDA kernels are presented in the
below graph. All results are presented for the double precision version of
the code with 200,000 FVPM particles.

!""#$%#&'()*#+, -(.,$(/'0(/1"#'"#%2

3/
(4

'!.

3/
(4

'5
1,

Traditional Mesh-Based
CFD Method

Mesh-Free CFD Method

!"#$%&'
()*+$,-./
!"#$%&'
()*+$,-./

0-
"
1
'2
%

0-
"
1
'3
4
+

x/L

y/
L

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

|

Lid-driven cavity flow computed using the
FVPM. This type of problem is a commonly

used benchmark for CFD algorithms.

Gradients of Flow Variables
To improve the spatial accuracy of the the FVPM, it is necessary to
reconstruct the flow variables to the interfaces between each particle pair
[2]. This is performed by computing the gradient of each flow variable at
each particle on the basis of a Smoothed Particle Hydrodynamics
approximation [3].

Particle Interaction Vectors
The most computationally
demanding part of the FVPM
algorithm is the computation of the
particle interaction vectors. These
vectors are typically computed
using numerical integration in the
overlap region between each
particle pair.

//Original Serial Looping Structure
for(i=0; i < number_of_particles; i++){
 for(j=0; j < neighbours_of_i; j++){
 for(k = 0; k < number_of_integration_points; k++){
 interaction_vector[i][j] += …;
 }
 }
}

References
1.  D. Hietel, K. Steiner, and J. Struckmeier, “A Finite Volume Particle Method for Compressible Flows”, Mathematical

Models and Methods in Applied Science, 10: 1363-1382, 2000
2.  R. Nestor, M. Basa, M. Lastiwka and N. Quinlan, "Extension of the finite volume particle method to viscous flow",

Journal of Computational Physics, 228:1733-1749, 2009
3.  J. Bonet, and T.-S. L. Lok, “Variational and momentum preservation aspects of SPH formulations”, Computer

Methods in applied mechanics and engineering, 180: 97-115, 1999

The interaction vector for each particle pair can be computed
independently of all others. Therefore, each interaction vector is computed
by a single CUDA thread.

Each CUDA thread is assigned a loop
over the integration points

The original serial algorithm consists of an outer loop over all particles
which in turn contains two loops over the particle neighbours. Each CUDA
thread performs the two neighbour loops for one particle.

//Original Serial Looping Structure
for(i=0; i < number_of_particles; i++){
 for(j=0; j < neighbours_of_i; j++){
 //Compute correction matrix (dimensions 2×2)
 }
 //Invert correction matrix
 for(j=0; j < neighbours_of_i; j++){
 //Compute gradient approximation
 }
} Each CUDA thread is assigned two

sequential loops over particle neighbours

As additional components of the FVPM code are implemented in CUDA the
overall application speedup will be increased. Furthermore, the speedup
values reported here are for double precision, and thus are expected to
increase significantly for the next-generation Fermi hardware.

!"#$%&'(

!)#**&'(

!+#,-&'(

.(

-(

+(

/(

,(

$.(

$-(

012345678(9:(;<9=(>2142?<58(@67512AB96(>5A7918(CDD<4A2B96(

!"
##
$%

"&
'(
)&
*&
+&
,#
-.
/&
!*
01
0&
2
34

&5
-&
!#
)6
/.
&

7839&:(;"(<#<=&

A few key components of the FVPM code account for the majority of the
computational effort. To date, the components highlighted in blue in the
following table have been accelerated using CUDA:

CUDA-accelerated components

!"#$%&'#()"*
+(,(#-

.'&#(/0$*
!"102$"/$
3'4(2-

.'&#(/0$*5

!"#$%&'#()"*
.)("#-

FVPM Component % Total CPU Time Serial
Particle interaction vectors 87.4
Gradients of flow variables 3.7
Flow variable rates of change 3.5
Particle volumes 2.0

