

Sean Lovett

SUMMARY

We used NVIDIA Tesla GPUs to accelerate the solution of hyperbolic partial differential equations, with application to airblast modelling.

FORMULATION

Many physical systems can be represented by hyperbolic partial differential equations. For a model problem we consider the **Euler** equations which describe inviscid compressible gas dynamics:

By linearising these equations we arrive at the **linear acoustic** equations, which describe incompressible sound propagation:

 $\partial \rho \mathbf{u}$ $+ \nabla \cdot (\mathbf{u} \otimes
ho \mathbf{v})$ ∂E $\mathbf{r} + \nabla \cdot (\mathbf{u}(F))$

 $\frac{\partial p}{\partial t} + \dot{I}$ $\rho_0 \overline{\partial}$

IMPLEMENTATION

We used C++ with CUDA to implement a second-order shock-capturing Riemann-problem-based method (the MUSCL-Hancock scheme) to solve the above equations [1,2].

This scheme solves a **Riemann problem** at each cell interface in order to compute flux between cells. The Riemann problem and the flux computation only require data local to the cell interface, making the problem well-suited to the CUDA model of computation.

1D domain showing computational cells. Fluxes are computed at cell interfaces by solving Riemann problems.

Structure of a general Riemann problem solution with initial data U_{l} and U_{R} .

A simplified form of the method is given below. Steps in red are parallelised on a thread-per-cell basis using CUDA.

> Input: Solution Uⁿ at tⁿ Output: Solution U^{n+1} at t^{n+1} Initialise ghost cells wavespeeds ~ get wavespeed per cell() dt ← cfl*dx/reduce(wavespeeds, max) fluxes ← get flux per cell() $U^{n+1} \leftarrow U^n + dx/dt*fluxes$ $t^{n+1} \leftarrow t^n + dt$

Academic supervisor: Dr N. Nikiforakis Industrial supervisor: Dr A. Minchinton

Airblast modelling on multiple Tesla units

$$\nabla \cdot (\rho \mathbf{u}) = 0$$

$$\mathbf{u}) + \nabla p = 0$$

$$E+p))=0.$$

$$K_0 \nabla \cdot \mathbf{u} = 0$$

$$\frac{\mathbf{u}}{t} + \nabla p = 0$$

MPI IMPLEMENTATION

We parallelise the computation on the coarse scale using MPI. The figure on the right shows the memory transfer route between sub-domains for MPI computations. Currently we are investigating concurrent kernel execution and memory transfer for efficient scaling over many MPI processes.

VALIDATION AND EVALUATION

The resulting code was extensively validated and evaluated for accuracy and speed. For these tests we used an **exact Riemann solver** for the Euler equations. Sample results are shown in the figures below.

The Laboratory for Scientific Computing Cavendish Laboratory, JJ Thompson Avenue

Strong scaling for the 3D Euler equations over multiple GPUs. Ideal scaling (line) and observed scaling (symbols).

REFERENCES

[1] S. Lovett. Many-Core Riemann-Problem-Based Methods for Compressible Flow. Master's Thesis, Department of Physics, University of Cambridge, 2009. [2] S. Lovett and N. Nikiforakis. Implementation of Riemann problem based methods on GPUs (in preparation). [3] S. Lovett, N. Nikiforakis and A. Minchinton. Airblast modelling on GPUs (in preparation).

Contact: sdl30@cam.ac.uk, http://www.lsc.phy.cam.ac.uk/people/sean_lovett.shtml

Acknowledgements: This work was sponsored by Orica Mining Services

A 3D airblast computation (left, 256³ cells) and a 2D computation in plan view (right, 2000² cells). Instantaneous pressure is visualised.

ORICA

Tesla GPUs were donated by NVIDIA