
VALIDATION AND EVALUATION
The resulting code was extensively validated and evaluated for accuracy and speed.
For these tests we used an exact Riemann solver for the Euler equations. Sample
results are shown in the figures below.

SUMMARY
We used NVIDIA Tesla GPUs to accelerate the solution of hyperbolic partial
differential equations, with application to airblast modelling.

FORMULATION
Many physical systems can be
represented by hyperbolic partial
differential equations. For a model
problem we consider the Euler
equations which describe inviscid
compressible gas dynamics:

By linearising these equations we
arrive at the linear acoustic
equations, which describe
incompressible sound propagation:

REFERENCES

[1] S. Lovett. Many-Core Riemann-Problem-Based Methods for Compressible Flow.
Master's Thesis, Department of Physics, University of Cambridge, 2009.
[2] S. Lovett and N. Nikiforakis. Implementation of Riemann problem based methods on
GPUs (in preparation).
[3] S. Lovett, N. Nikiforakis and A. Minchinton. Airblast modelling on GPUs (in
preparation).

Contact: sdl30@cam.ac.uk, http://www.lsc.phy.cam.ac.uk/people/sean_lovett.shtml

AIRBLAST MODELLING
Here we demonstrate an application of this work to modelling airblast
(acoustic waves) generated by bench mining operations [3]. Airblast is
a primary source of noise and is governed by strict regulations. Fast
time-to-solution is important when modelling this problem. Ideally
models could be run directly on laptops in the field.

We consider a model in which airblast is generated by piston-like
displacements of the free rock face:

We solve the linear acoustic equations using these displacements as
input. The relative timing of these displacements affects the direction of
the resulting airblast. With faster simulations, more timing programmes
can be tested to fine-tune the direction and intensity of the airblast.

Piston model for airblast generation.

The Laboratory for Scientific Computing
Cavendish Laboratory, JJ Thompson Avenue

Cambridge, CB3 0HE

UNIVERSITY OF
CAMBRIDGE

Acknowledgements: This work was sponsored by Orica Mining Services
Tesla GPUs were donated by NVIDIA

IMPLEMENTATION
We used C++ with CUDA to implement a second-order shock-capturing
Riemann-problem-based method (the MUSCL-Hancock scheme) to solve
the above equations [1,2].

This scheme solves a Riemann problem at each cell interface in order to
compute flux between cells. The Riemann problem and the flux
computation only require data local to the cell interface, making the
problem well-suited to the CUDA model of computation.

A simplified form of the method is given below. Steps in red are parallelised
on a thread-per-cell basis using CUDA.

Input: Solution Un at tn

Output: Solution Un+1 at tn+1

Initialise ghost cells

wavespeeds ← get_wavespeed_per_cell()

dt ← cfl*dx/reduce(wavespeeds, max)

fluxes ← get_flux_per_cell()

Un+1 ← Un + dx/dt*fluxes

tn+1 ← tn + dt

Structure of a general Riemann problem
solution with initial data U

L
and U

R
.

1D domain showing computational cells. Fluxes are
computed at cell interfaces by solving Riemann problems.

MPI IMPLEMENTATION
We parallelise the computation on the coarse scale using
MPI. The figure on the right shows the memory transfer
route between sub-domains for MPI computations.
Currently we are investigating concurrent kernel
execution and memory transfer for efficient scaling over
many MPI processes.

Scaling for the 2D Euler equations on a
single GPU. N is the number of cells per

dimension.

Strong scaling for the 3D Euler equations
over multiple GPUs. Ideal scaling (line)

and observed scaling (symbols).

Academic supervisor: Dr N. Nikiforakis
Industrial supervisor: Dr A. Minchinton

A 3D airblast computation (left, 2563 cells) and a 2D computation in plan view (right, 20002 cells).
Instantaneous pressure is visualised.

Airblast modelling on multiple Tesla units
Sean Lovett

A 3D shock-bubble interaction computed with 400x400x600 cells. The compute
time on 4 Tesla GPUs was 24 minutes; the same computation on 4 CPUs would
take about 12 hours. Instantaneous density (volume render) and density gradient

(surface) are visualised.

A quarry bench blast in Australia
(image courtesy Orica).

