
3. Shared Memory Padding. Because threads on the block

boundary have only three neighbours in the same thread block,

shared memory must be padded with ghost cells before computing

4.Execution. Each thread is identified with a unique ID in the

whole grid, and the kernel executed across these parallel threads in

the grid.

4.Optimization Techniques

We used several techniques to optimize our codes. First, as we

described in the CUDA Implementation section, we used shared

memory to store ghost cells in order to reduce global memory

access. Second, we use texture memory, a read-only memory space

with 2D rotationally-invariant caching, to minimize the penalty of

dealing with ghost cells. We use texture when performing complex

stencil differencing. Third, when a loop within a kernel incurred,

we unroll the loop to reduce divergence. We also experimented

with different block and grid sizes to see which is the best for our

program.

5.Performance Results

Figure 2: experiment results of cavity flow, Riemann problem and 

2-D airfoil problem

The figures above are respectively the streamlines for cavity flow,

instantaneous density of a 2-D Riemann problem at t=0.1 and plot

of the pressure coefficients on the airfoil. The following table

illustrates their corresponding speed:

We also tried the OpenCL platform to measure performance on the

cavity flow problem, with the following results:

6.Conclusion

By using graphic hardware, we have demonstrated that a

substantial performance gain can be achieved on some of the CFD

codes. Based on these results, we can expect that GPU will be a

powerful tool in the future scientific computing.

7.Reference

Tingxing Dong,Xinliang Li, Sen Li, Xuebin Chi Acceleration of 

Computational Fluid Dynamic Codes on GPU, 

Tingxing Dong (2010), Simulation of Transonic Flow over Airfoil 

on GPU, SCCAS

Computational Fluid Dynamic on GPU

1.Introduction

Over the past few years, GPUs (graphics processing units) have

seen a tremendous increase in performance. In order to develop a

scalable, high-accuracy CFD program and test GPU performance

in this area, we have ported three two-dimensional CFD codes to

the CUDA and OpenCL platforms. The cases include codes of

incompressible Navier-Stokes (N-S) equations, Euler and

compressible N-S equation. One of the cases (airfoil, as shown in

Figure 1) has now been used as a component in Hoam-OpenCFD

project to simulate flow turbulence on the airplane wing.

Figure1: airfoil and its original grid and new grid

In the following parts, we give detailed descriptions of the

problems, followed by their CUDA implementation together with

code optimization strategies. Next we show our experiment results.

We demonstrate that CUDA can accelerate around 16 to 63× speed

up in most of our cases.

2.Problem Description 

The code we ported to the GPU included 2D cave flow, 2D

Riemann problem, and 2D flow over a RAE2882 airfoil. We used

finite differences to solve all the problems. The following table

summarizes details of problem description and numerical methods.

3.CUDA Implementation of CFD Code

In all cases, the CPU is responsible for the initialization of the data,

reading initial and grid files and coping the data into a space of the

same size on device memory of GPU. The GPU takes over the

most expensive computing until the loop is over. Finally, the CPU

handles the post-processing. The entire procedure can be divided

into the following 4 steps:

1.Decomposition and thread mapping. For structured grid

applications, a natural way is to split the domain into smaller parts

which can fit into the thread block. Each thread computes the

updated variables of one element within each of the smaller parts in

a straightforward way.

2.Memory Access. The algorithm dictates the complexity of the

stencil. Consider a straightforward 2D 5-point stencil. To update

the element i, j, thread i, j needs to read its four neighbours. This

means that data of each point will be loaded at least four times.

Obviously, it is too expensive to let each thread directly access data

from external DRAM which has about 500 cycles latency. An

efficient method is to copy data within one block from DRAM into

shared memory, which serves as cache where threads read directly

to reduce the cost.

Ting Xingdong1, Sen Li 1

1.Supercomputing Center, Chinese Academy of Sciences

Test Descriptions Equations Numerical method Grid 
resolution

1 2D cave flow Incompre
ssible N-S

3rd order quick 
method;laminar

96*96-
1024*1024

2 2D riemann Euler 2rd order NND and 1st order 
Euler

512*512-
1024*1024

3 2D flow over a 
RAE2882 
airfoil

Compress
ible N-S

5th order upwind scheme for 
inviscousterm;6th order 
central scheme for viscous 
term;3rd Runge-Kutta;B-L 
model;1st for boundary 2d 
for sub-boundary

369*65

Test Grid size GPU time AMD CPU 

time

GPU speedups

2D Riemann 

Problem

512*512 4.67s 148.42s 31.7

2D Cavity flow 1024*1024 24.3s 1543s 63.5

2D airfoil 1024*128 6m 100m 16

scale size serial openmp(4 cores) OpenCL(Nvidia) OpenCL(ATI) CUDA

512 * 512 13.9844 9.406 2.975 7.588 1.34

1024 * 1024 70.83 52.2614 9.213 24.785 4.81

2048 * 2048 281.4307 217.9449 32.651 91.246 17.54

4096 * 4096 3823.8038 1515.912 124.742 XX 66.91

5120 * 5120 6843.9784 2378.9607 196.625 XX 108.3499


