
Volume Ray Casting

Ray Tracing

GPU Build Algorithm

Level 0 (Root)

Level 1

Actual

KD-Tree

Underlying Matrix

Storing Split

Planes

Level 3 (Leaves)

Level 2
0 20 40 60 80 100

Wood Doll

Hand

Ben

Fairy Forest

1 2 3 4 5 6 7 8 9

Matrix Octree Matrix KD-Tree

Dynamic and Implicit Trees for Graphics

and Visualization on the GPU
Nathan Andrysco and Xavier Tricoche

Purdue University, Department of Computer Science

Matrix Trees
We propose an octree and kd-tree data structure that

uses matrices for the underlying data storage. Since we

can derive all parent/child locations in memory, instead

of explicitly storing pointers, our representation is easily

represented on GPU architectures. For regular data

structures (i.e. octrees) we also derive spatial

information, which helps reduce GPU register pressure

since this information does not need to be saved

throughout any algorithms. We use a sparse matrix

representation to minimize our footprint in memory, while

maintaining our regular matrix structure. In this example

quadtree, the sparse matrix data structure fills in any

“holes” (dotted red lines).

Even for non-regular trees (i.e. BSP-trees), we can use

this matrix representation and still derive parent/child

information, which can lead to big memory savings over

previous representations.

Sparse Matrix Data

Structure
Unlike previous pointerless tree representations, our

data structure can adapt its sparsity to the tree’s shape.

Though any sparse matrix data structure can be used,

we recommend the use of the following block based one.

In this data structure, we only allocate a block if data is

contained within it. We use an auxiliary matrix to

maintain references to our allocated blocks. This sparse

matrix representation has O(1) access and insertion

time, which means global memory accesses on the GPU

is minimized.

The following algorithm is used to build our regular tree

data structure on the GPU. The data type we are storing

in the trees is triangles, but the algorithm is easily

adjusted to other primitives. Except for the initial step

(1), which has a minimal amount of iterations and is

more quickly executed on CPU, each step is executed in

parallel as its own GPU kernel. The scans and sort can

efficiently be done using CUDPP. The graph below

shows how much time is spent in each part of the

algorithm. The build is both less theoretically complex

and simpler to implement than the surface area heuristic

tree builds used in ray tracing. Combined with faster

render times, our trees outperform the previous state-of-

the-art on the GPU for all ray tracing stages.

1) for level 0 to max_tree_level do

compute regular tree properties

2) foreach triangle do

counter intersecting nodes

mark intersecting blocks

3) scan (triangle-node counter)

4) scan (marked block counter)

5) foreach marked block do

assign index pointer to allocated block

6) foreach triangle do

foreach intersecting node do

output triangle-node pair

7) sort (triangle-node pair vector)

8) foreach sorted triangle-node pair do

if next pair in vector has different node then

update these nodes’ offsets into triangle vector

9) foreach leaf level node do

mark parents as non-null

Improved Traversal
Our regular tree structure allows for improved tree

operations. First, we are able to spatially hash to any

node. We can use this hash to quickly compute any

neighbor location. For leaf finding, we can hash directly

to the leaf level. If this node does not exist, we can do a

binary traversal along the path to the root, giving us a

O(log h) complexity, where h is the height of the tree.

The previous state-of-the-art had a O(log N), where N is

the number of nodes in the tree.

1

2

3

Compared to previous traversal methods, our ray caster

visits far fewer nodes. As a result, every single test

resulted in faster render times, with a speed-up of nearly

300% in some cases. Additionally, we showed memory

savings of nearly 50%.

Matrix Octree Matrix KD-Tree KD - Jump
Octree - Restart KD - Restart

0

20

40

60

80

0

5

10

15

0

6

12

18

0

5

10

15

Composite Isosurface

Head

Aneurism

Teapot

Bonsai

Engine Head

Aneurism

Teapot

Bonsai

Engine

N
o

d
e
s
 Q

u
e
ri

e
d

 P
e
r

Im
a
g

e
 (

1
0
0
,0

0
0
,0

0
0
s
)

G
P

U
 R

e
n

d
e
r

T
im

e
s

(F
P

S
)

Using the matrix tree data structure results in faster build

times and quicker rendering on the GPU than previous

state-of-the-art methods. Not only do our trees require

fewer node traversals, but we also perform fewer ray-

primitive intersection tests. The image to the left

demonstrates this property, where we compare a regular

matrix kd-tree (left) to a surface area heuristic built kd-

tree (right). Black indicates a low number of

traversals/tests and white indicates high. Overall, we

achieved a 50% speed increase for this scene, with other

test scenes showing similar improvements.

Future work

We wish to represent very large data sets on the GPU. One such

data set type is the unstructured meshes used in fluid dynamic

simulations. In preliminary tests, we show promising results in

representing this type of data using the matrix tree

representation.

