Visual Cortex on a Chip

Large-scale, real-time functional models of mammalian visual cortex on a GPGPU
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Goal

Los Alamos National Laboratory’s Petascale Synthetic Visual Cognition
project is exploring full-scale, real-time functional models of human visual
cortex using the Roadrunner petaflop (1000 teraflop) supercomputer and
future GPGPU-based exaflop (1000 petaflop) computers. The project's
goal is to understand how human vision achieves its accuracy, robustness
and speed. Commercial-off-the-shelf hardware for this modeling is rapidly
improving, e.g., a teraflop GPGPU card for a workstation now costs ~$500
and is ~size of mouse cortex. We now present initial results demonstrating
whole image classification using standard computer vision image data-
sets, and object extraction from UAV video using a model of primary visual
cortex running on a GPGPU (240-core NVIDIA GeForce GTX285).

As this technology continues to improve, cortical modeling on GPGPU
devices has the potential to revolutionize computer vision.

“WHERE"
ATHWAY

Functional Models of Visual Cortex. Processing in the human visual system starts in the
retina of the eye, continues in the lateral geniculate nucleus (LGN), and then reaches the cortex at
region V1 (primary visual cortex), where the input is processed by layers of cortical neurons operating in
a massively-parallel assembly of columns of feature-specific cells. Hubel and Wiesel's model of V1
consists of layered “simple” S-cells and “complex™ C-cells [1]. Fukushima [2] and Poggio, et al., [3-5]
have proposed hierarchical models of the ventral visual pathway (‘what” pathway) comprised of visual
cortical regions V1, V2, V4, supporting a model of whole object detection in inferotemporal cortex (IT).
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reached a petaﬂop in 2009 [6], marking the arrival of computing platforms large enough and fast enough
for full-scale, real-time functional modeling of human cortex [7). However, small mammals are capable
of excellent visual acuity and object recognition with brains orders of magnitude smaller than humans
(11G cortical neurons in human vs 0.3G in cat v 0.004G in mouse). GPGPU technology could enable
widespread use of large-scale, real-time models of mammalian visual cortex for a wide range of
‘computer vision tasks.

Model

LANL's Petascale Artificial Neural Network (PANN) [8] is a high performance C++, C, and Python
ion of a ical model [2-5] of human visual cortex regions V1
(primary visual cortex), V2, V4, and m(emlemporal cortex (IT), the ventral pathway of visual processing
( wha\ pa!hway) PANN exploits conventional clus(ers of multi-core CPUs, or hybrid machines such as
clusters [6]). or GPGPU- clusters that are
currenlly in development. Pinto, Cox & DiCarlo [9,10] have recently shown high-throughput image and
video processing with V1-like models using a multi-GPGPU machine.

The key scientific question is how does visual cortex organize itself in response to large amounts of
visual stimulus? PANN is designed to process large amounts of still and video imagery to match the
~10*15 pixels/year taken in by the 6M cones of the human retina. PANN processes this imagery using

P leaming to build a hie lion of natural scenes, combined with
a relatively small amount of supervised learning required to train a back-end classifier (e.g., linear kernel
support vector machine (SVM) [11]). The hierarchical representation of natural scenes is believed to be
sparse, drawing from a redundant dictionary of scene elements (Olshausen & Field, [12]), which is
driving development of a rich set of new ideas about pattern recognition. The speed achievable by
running on clusters of GPGPU-accelerated compute nodes will enable testing of the properties of some
of these learning rules at the full scale of human visual experience (~months of video).

Processing in Retina
Local contrast equalization, for each patch set
mean to zero and local Euclidean norm to 1.

Processing in S-cells
Radial Basis Functions with standard
oriented Gabor neuron weight vectors [3-5].
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Processing in C-cells
MAX Function over S-cell receptive fields.

Gu(s)=max({s })

Learning

PANN uses Hebbian learning to set
the features detected by neurons from
large amounts of natural imagery.

Hebb-Oha leaming rule [13] :

Aw=Ay(r.w)(r-w)

Scaling of image classification accuracy with size of dataset

Neocognitron-type models have been to achieve whol lion accuracy
comparable to human subjects under conditions of speed-of-sight psychophysics experiments [4]. Here
we show results with simulated data sets of rendered models of cats versus dogs (using 3D models with
the 3DMax rendering engine) [14]. Model accuracy improves linearly with the logarithm of the size of
the training set. Larger training sets require more computing resources to explore scaling properties.
Hybrid systems with only one or a few GPGPUs enable large-scale, fast simulations of visual cortex,
which has the potential to revolutionize research in this field.
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Results

We ported our PANN C++ code to NVIDIA GPGPU using CUDA to develop C++ host code and C
device code. The porting process was straight-forward and fast to complete. The PANN code is
optimized for ease of algorithm exploration, e.g., we use global device memory to store neuron columns
of arbitrary complexity, and the port to GPU was designed to allow ease of validation of host versus
GPU code. We report significant speed-up without loss of accuracy on GPGPU, and have been able

to develop our code on a range of machines, from simple 16-core GPUs in laptops (NVIDIA GeForce
9600M GT), to 240-core GPUs in workstations (NVIDIA GeForce GTX285), to multi-GPU servers.
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GPGPU significantly accelerates visual cortex models

We compare speed of a vectorized PANN model (using SSE intrinsics) running on a 2.6 GHz Intel core (Apple
MacPro under OSX 10.5) versus model performance on a NVIDIA GTX285 240-core GPGPU card. We compared
outputs at each stage to verify agreement of calculations. We compared average performance over many frames of a
840x480 pixel/frame video stream. As shown above, the retinal component of the model showed x100 speed-up. The
S-cell module, which is the most computationally intensive part of the model, showed x10 speed-up. The C-cell
module showed x10 speed-up. Host file i/o and round-trip communication time between host and device was a small
fraction of frame processing time, and can be parallelized with frame processing. Hence we conclude that GPGPU
with CUDA enables significant visual cortex model speed-up without significant constraint on algorithm exploration.

Vehicle Tracking in UAV-like Video

We have preliminary results using a leamed model of
primary visual cortex on public-release UAV-like imagery of
vehicle detection and tracking scenarios provided by the
DARPA/DSO Neovision2 program. We are currently
working to explore and optimize the object-recognition
capabilties of visual cortex models under different
conditions of learning rule, initial network topology, and
training set size. Initial results suggest that visual cortex
models such as PANN are a promising approach to this
hard visual pattern recognition problem. GPGPU
acceleration may be the key enabling technology for this
type of application, as exploiting the GPGPU enables a
better than order-of-magnitude speed-up of execution of
the model on workstations, enabling learning of better
models and faster execution of the final model.
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