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State transition model assumes random

accelerations and that the state is a deterministic

function of velocity and the previous state:

Sensor model assumes that the range scan is

generated by ray casting. Each pixel k is

therefore conditionally independent given the

pose and mesh:

The depth at pixel k is generated by rendering a

skinned mesh to calculate the true distance z*

Smooth likelihood by allowing the ray to hit a

neighboring pixel in rendered depth scan.

Likelihood can be evaluated efficiently on a GPU

by using shaders for differencing the measured

data and rendered pose. Use glGenerate-

MipMaps for computing the average pixel error.

Given a sequence of depth images of a human

subject, estimate the 3D locations of all joints in

real time (shoulder, knee, etc.)

Potential Applications:

Human-machine interaction, smart surveillance,

ani-mation, virtual reality and motion analysis.
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Local Hill Climbing

Starting from the root of the kinematic chain, we

sample perturbations to the state. For each

dimension, we sample using a coarse grid of joint

angle perturbations, followed by a finer sampling.

Large batches of pose hypotheses are evaluated

simultaneously using the GPU.

Objective: Find the body pose that maximizes the

posterior likelihood of the observed depth images:

Challenge: High-dimensional state (48 DoF) and

non-linear, noisy dependencies; Real-time

constraints.

Our Approach: GPU-accelerated local hill

climbing in model space + integration of body part

detections to track fast and difficult motions.
Local Hill Climbing

Evidence Propagation

Body Part Detection

Extract interest points from the surface mesh and

assign body part labels [Plagemann et al., ICRA

2010].

Evidence Propagation

Integrate body part detections into the set of pose

hypotheses.

Auxiliary probabilistic model relating associated

detections to the state:

position of model vertex i 

as a function of pose

corresponding body part

Problem: pi ~ X is heavily non-linear. The

location of a vertex pi is a function of the part it is

located in and the pose of the part. Wi the pose of

part i a product of the poses of its ancestors:

Our Solution: Apply the unscented transform to

linearize about the current state. This results in a

linear Gaussian network, in which MAP inference

is easy. The procedure can be repeated until

convergence.

Data Association

Problem: Detections consist only of location and

class. How to associate detections to model

vertices, and reject false detections? Exponential

# of possibilities!

Our Solution: Prune associations explained by

current estimate. Consider associations one at

time and accept those that improve the likelihood

when integrated using EP.

Complete Algorithm

N

Experiments

Dataset

28 sequences of various difficulty. We simultaneously

recorded marker location traces use an active marker

system along with frames of depth data at 25 FPS

using the SR4k. Sample frames:

Results

Conclusion

With the hybrid generative /discriminative GPU-

accelerated filtering approach introduced in this paper, 

we believe to have made a large step forward, but there 

remain more challenges to overcome. 

Some examples include cluttered scenes, multiple 

people, automatic model initialization, improved speed 

and robustness. Extremely fast motions remain difficult 

to track with current sensors. 


