
1.Request is identified based on target address as
being a VLS access

2. pbase holds physical base address, used
instead of TLB lookup

3.Multiple way lookups avoided on a VLS access
4.Replacement policy respects partitioning
5. pbound holds number

of pages given to VLS

BENCHMARKS
Hand-tuned versions of

several kernels designed

to run on pure cache or LS

machines.

Parallelized with pthreads.

Run to completion.

PROBLEM STATEMENT
Software-managed local stores are more efficient than

hardware-managed caches for some apps, yet their

use has been confined to embedded systems. Local

stores are problematic in general-purpose systems

because they add to process state on context switches,

and are difficult to program. We propose the use of

virtualized local stores to provide the benefits of a

software-managed memory hierarchy on-demand for

individual optimized routines in a general-purpose

system. A VLS is mapped into the virtual address space

to allow software management, but is kept in a partition

of the hardware-managed cache when active.

Henry Cook

RELATED WORK
Smart Memories, TRIPS, ALP all provide heavyweight

reconfigurability. Various embedded processors have

used way-based partitioning and locking. Fermi allows

selecting between two configuration at kernel launch.

METHODOLOGY
We used a combination of Virtutech Simics and

Wisconsin GEMS to evaluate the detrimental effects of a

fixed allocation between hardware and software-

managed local memories on various computational

kernels. General-purpose multiprocessor workloads will

consist of all of these kernels and more.

POSSIBLE MEMORY CONFIGURATIONS

FUTURE WORK
• As GPUs become more mainstream, they are

adopting very similar mechanisms

• Fermi allows only two possible partition sizes

• How can the flexibility be increased?

• Reallocation can only occur between kernels

• How can the time granularity be decreased?

• Given the natural latency tolerance of GPU

programs, what factors drive programmers to

used “shared memory”?

Virtual Local Stores
Enabling Software-Managed Memory Hierarchies in Mainstream Computing

STATIC ALLOCATION OF BOTH

HW-MANAGED CACHES

VIRTUAL LOCAL STORES

MICROBENCHMARK RESULTS

MACHINE
16 cores, 800MHz

16 KB 2-way L1 I-Cache

32 KB 4-way L1 D-Cache

with VLS up to 3-way

512 KB 16-way unified L2

1 DMA engine per core

Some kernels perform better with local stores, some do not.
Static allocations that limit the size of each partition are
detrimental to both.

Hide locality from software by

automatically moving data.

Require prefetch engines for

performance. Inflexible

mappings and replacement

policies. Productive.

Provides both A and B within a

single system. Presence of

some cache improves pro-

grammability. Benchmarks

cannot use local store until

they have been rewritten.

Provides benefits of C, but is

lightweight and dynamically

reconfigurable. Programmers

have power to choose between A

and B on a per routine basis.

Fits OS/multiprocessor goal.

ADDRESS SPACE MAPPINGS

VLS MECHANISMS

Mapping of virtual local stores from the VA space to
physical pages, and how data in those pages is
indexed in the on-chip memory hierarchy.

SW-MANAGED LOCAL STORES

Expose locality to software,

requiring explicit DMA control.

Allow macroscopic prefetching

and other optimizations. Better

flexibility and simple high-

bandwidth transfers. Efficient.

SPEECH APPLICATION RESULTS

Each phase of
the algorithm
sees different
benefits under
HW or SW-man.
VLS allows us to
pick between
them per-phase.

Load caused by
context switches
is reduced: VLS
data is backed by
phys. mem.

Parallel Computing Lab
University of California, Berkeley
hcook@eecs.berkeley.edu

