
HyperFlow: An E�cient Data�ow Architecture
for Multi CPU-GPU Systems
Huy Vo1, Daniel Osmari2, Luiz Scheidegger2, João Comba2, Jason Shepherd3 and Cláudio Silva1

1 University of Utah, USA 2 UFRGS, Brazil 3 Sandia National Laboratories, USA

TOM

TOM

TOM

TOM

TOMTOM

Flow Task-Oriented Module (TOM)

Task Impl.
Resource

Specs

process()

Task Impl.
Resource

Specs

process()

Task Impl.
Resource

Specs

process()

Execution Engine

Pipeline

User API

Low-Level API

Flow Construction
and Destruction

Runtime System Flow Execution
Scheduling

Pipeline
Update

VPE
CPU/GPU
Context

VPE
CPU/GPU
Context

Virtual Processing Elements

Load Balancer

Flow Cache

Scheduler

HARDWARE

PIPELINE EXECUTIONWHY HYPERFLOW?

SYSTEM ARCHITECTURE

TASK-ORIENTED MODULE (TOM)

MULTI-MEDIUM DATA INTERFACE

SHOW CASE 1 - HIGH-THROUGHPUT IMAGE PROCESSING

SHOW CASE 2 - HYBRID ISOSURFACE EXTRACTION

SHOW CASE 3 - MAP/REDUCE WORD COUNT

• Hold meta-data for its task and parameters
• Manage multiple implementations for a specific task
• Each implementation specifies its own resources

• Dataflow is widely used in scientific computing
• Current dataflow systems lack parallelism support:
 - Mostly designed for single-core machines
 - Some only support data-parallelism with MPI
 - Ad-hoc for multi-core and (multi-)GPU platforms
• There exists parallel frameworks such as TBB, StarPU
Stream SDK, etc. but di�cult to apply to data�ow due
to being tightly coupled with task-graph execution.

• Data explicitly denotes which platform to reside in
• Data transferring is triggered automatically but
conversions are done by user-define functions

A

(Ø,A)

(Ø,A)

A

D

B C

W - Waiting List

R - Running Set

VPEs
Idle

(3)

(Ø,A)

A

(Ø,A)

Idle

(Ø,A)

A

D

B C

W - Waiting List

R - Running Set

VPEs
A

(Ø,A)

(4)

Idle

(A,C)(A,B)

(A,B) (A,C)
(Ø,A)

A

D

B C

W - Waiting List

R - Running Set

VPEs
A

(Ø,A)

(5)

(A,C)(A,B)

B

(A,B)

C

(A,C)

(A,C)

A

D

B C

W - Waiting List

R - Running Set

VPEs
C

(A,C)

(6)

IdleIdle

(A,C)(A,B)(B,D)

(A,B) (A,C)

(B,D)

A

D

B C

W - Waiting List

R - Running Set

VPEs
IdleIdleIdle

(1)

(Ø,A)
(Ø,A) A

D

B C

W - Waiting List

R - Running Set

VPEs
IdleIdle

(2)

A

(Ø,A)

(Ø,A)

(Ø,A)

(Ø,A)

(A,C)

A

D

B C

W - Waiting List Cache

R - Running Set

VPEs
C

(A,C)

(7)

C

(A,C)

B

(A,B)

(B,D)

(A,C)(A,B)

C

(A,C)

B

(A,B)

(B,D)

(A,C)(A,B)

A

D

B C

W - Waiting List Cache

R - Running Set

VPEs

(8)

Idle

(C,D)

(C,D) C

(A,C)

(A,C)

A

D

B C

W - Waiting List Cache

R - Running Set

VPEs

(9)

Idle

(B,D)

(C,D)

D

(C,D)

(B,D)
(B,D) Idle D

(C,D)

(C,D)

A

D

B C

W - Waiting List Cache

R - Running Set

VPEs

(B,D)

(10)

Idle

(B,D)(C,D)

(C,D) Idle

A

D

B C

W - Waiting List Cache

R - Running Set

VPEs

(11)

D

(C,D)

(B,D)

Idle

(C,D)

Idle Idle Idle

A

D

B C

W - Waiting List Cache

R - Running Set

VPEs

(12)

Edge Detection Pipeline

Isosurface Extraction Pipeline

Map/Reduce in HyperFlow

#CPU Cores #GPU Cores Time (s)
1 0 3261
2 0 1747
4 0 1049
8 0 668
8 1 440
8 2 272
4 3 151

Machine Specs:
 (1) 2 x Xeon w5580, 8-core
 24GB RAM
 Quadro 5800
 (2) Intel 970i, 4-core
 6GB RAM
 GTX 295, Tesla C1060

Timing Results
Input: 312 images ~ 6GB

Timing Results
Input: 1 billion voxels

Timing Results
Input: 83 million words

The pipeline starts with a dataset reader that loads blocks of the volume and stream them to a TOM classifier. The classifier module
traverses each block to generate a list of active voxels, i.e., only voxels that may contain the desired isosurface (voxels that do not
contain v can be safely discarded). The list of active voxels is progressively streamed to a triangle generation TOM, which is designed
to inspect each voxel and, based on a standard Marching Cubes case table, construct a set of triangles that approximates the desired
isosurface inside that voxel. This set of triangles can also be streamed to other modules for further post-processing.

Using HyperFlow, it becomes very easy to optimize the usage of CPU and GPU computational resources. We implemented the dataset
reader to divide the input volume into blocks. The execution scheduler automatically instantiates separate, concurrent TOMs to
perform voxel classification on each block. Since there is no data dependency between different instances, this parallelism greatly
improves algorithm performance. The TOMs designed to construct the actual isosurface can also be trivially parallelized by HyperFlow.

Read Docs

OUTPUT

Tokenize
MAP MAP

Count Word

Combine

Combine

Sort

Partition

Sum

Write

INPUT

MAP

SHUFFLE

REDUCE

OUTPUT

SHUFFLE

MAP

REDUCE REDUCEREDUCE

INPUT

(a) (b)

#CPU Cores #GPU Cores Time (s)
1 1 132
1 2 101
2 1 125
2 2 72
4 1 127
4 2 71
4 3 49
8 1 113
8 2 69

Two execution scenarios need to be addressed: (1) an upstream module, which executes
sequentially, but generates output for concurrent execution downstream and (2) a
downstream module which can only be executed sequentially and has to collect �ows from
upstream modules executed in parallel. Scenario (1) occurs when data are moved from the
reader to mappers, as well as from the shu�ing phase to reducers. This is necessary to
enable data parallelism in the Map and Reduce phases. Scenario (2) happens when the
execution comes back from the Map and Reduce to the Shu�ing and Writer.
HyperFlow supports both scenarios: (1) an upstream can generate multiple �ows
with unique identifications to trigger data-parallelism in the pipeline; (2) TOM can limit
task implementations to run sequentially by using a global lock. These are illustrated in the
source code on the right.

