
MPI-CUDA Applications Checkpointing

Motivation

Evaluation

Nguyen Toan† Tatsuo Nomura† Hideyuki Jitsumoto††

Naoya Maruyama† Toshio Endo† Satoshi Matsuoka† ††† ††††

{nguyen, tatsuo, naoya, endo, matsu}@matsulab.is.titech.ac.jp,

jitumoto@cc.u-tokyo.ac.jp

† Tokyo Institute of Technology
†† The University of Tokyo

††† National Institute of Informatics
†††† Japan Science and Technology Agency

Methodology

 Lots of large-scale HPC systems are now adapting

GPUs to achieve better performance

+ Multi-GPU applications such as MPI-CUDA

ones are being developed to exploit GPUs’ highly

parallel computationality

 Fault tolerance obviously needs to be supported

+ ECC alone cannot tolerate hard failures

+ Checkpoint/restart is necessary

CPU

process

Checkpoint

signal arrival

GPU

Running kernel

Waiting until

communication of

CPU-GPU and

kernel execution

finish

Evacuate states

on GPU into CPU

Open MPI+BLCR

checkpoint

Recover states on

GPU

Program

resumesCurrent GPU’s fault-tolerant tools do not support

checkpointing multi-GPU applications

MPI CUDA applications checkpointing schemeSave states in MPI CUDA applications

States of processes on CPUs

States of interaction

amongst processes

States of GPUs

States of communication

betwwen CPUs and GPUs

BLCR

Open MPI

CUDA checkpointer

Wait until

communication finish

Implementation
CUDA checkpointer + Open MPI + BLCR intergrationCUDA checkpointer

Process 1 CUDA

MPI

GPU

Process 2 CUDA

MPI

GPU

Process n CUDA

MPI

GPU

Contructed followed by 3 steps:

 Pre-processing

+ Waiting until GPU’s kernel execution and

communication between CPU-GPU

+ Copy all the user data in the device

memory to the host memory and destroy

CUDA context

 BLCR

+ Have BLCR do checkpointing the CPU

state

 Post-processing

+ Copy copied data on CPU back to GPU and

restore CUDA context

Memory

chunk size

Address

size1 ptr1

size2 ptr2

size3 ptr3

… ….

size1

size2 size3

Manage data objects on GPU

 Record GPU memory chunk sizes and addresses

 Use a custom memory allocator to allocate GPU memory

regions in appropriate positions

+ Since GPU memory addresses allocated by

cudaMalloc may change at restarting, we manage to keep

them unchanged during checkpoint/restart

Manage code objects on GPU

 Keep track of data registered in the kernel generated by

_cudaBinRegisterFatBinary、_cudaRegisterFunction

+ These data need to be registered again at restarting

GPU memory

Object

list

 Attach CUDA checkpointer to BLCR

+ Make use of user callback function in BLCR

 Prevent signal interruption during CUDA API execution by

applying signal masking

+ Before each CUDA API execution, the signal handler is modified to perceive the

arrival of the checkpoint signal

+ After each CUDA API execution, the signal handler is returned back to the

original one which handles checkpointing

+ If the checkpoint signal arrives in the middle of signal masking, it will be sent to

the current thread to perform checkpointing

 Guarantee CUDA API’s proper execution in signal handler

+ We conducted tests to verify that CUDA APIs which are used in our CUDA

checkpointer such as cudaMemcpy, cudaThreadSynchronize() perform properly

in the signal context

0

5

10

15

20

25

30

35

100 200 300 400 500 600 700 800 900 1000

R
u
n
ti

m
e
 (

s)

Data size (MB)

Pre-processing

BLCR

Post-processing

CUDA checkpointer microbenmark

BLCR’s

overhead

increases

linearly

with data

size

Overhead of pre-processing & post-processing is very small

 Target: a simple CUDA program which allocates raw data

with size varying from 100 MB to 1000 MB

 Checkpoint test is performed on one machine in Raccoon

Experiment Environment

Raccoon TSUBAME

CPU/Memory Intel i7 920 2.67GHz

(4core/8thread) 12GB

Memory

AMD Opteron 880 2.4GHz x

8(16core) 32GB Memory

GPU/Memory Tesla C2050, 2.6GB Memory Tesla S1070, 4GB Memory

OS CENTOS 5.4 SUSE 10.3

BLCR 0.8.2 0.8.1

CUDA 3.0 2.3

Open MPI 1.4.2 1.4.2

Network Infiniband 4x DDR Infiniband 4x SDR

Local Disk SSD HDD

MPI CUDA checkpointer evaluation

 Target: 3D Stencil MPI CUDA application

 Conduct a weak-scaling experiment with

+# of procs:10~60 +Z-axis value: 100~600 +X&Y values are fixed at 256

 Unknown = (App runtime with ckpt) – (App runtime w/o ckpt)

– (pre-processing + BLCR + post-processing)

Future Work

Problem

size

of

procs

BLCR (s) Unkno

wn (s)

500x500

x500

50 25.1 307

500x500

x500

40 25.7 273

400x400

x400

40 14.5 87.9

Some costs depending on

data size and # of procs are

probably included in the

unknown overhead

 Analyze details of the unknown overhead

 Improve CUDA checkpointer to support more CUDA APIs
 Use diskless checkpointing to guarantee scalability

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100/10proc 200/20proc 300/30proc 400/40proc 500/50proc 600/60proc

Z size / # of procsCUDA checkpointer Unknown

0
10
20
30
40
50
60
70

100/10proc 200/20proc 300/30proc 400/40proc 500/50proc 600/60proc

R
u
n
ti

m
e
 (

s)

Z size / # of procs

Unknown Post-processing BLCR Pre-processing Application runtime

All execution time increase, failing to get weak-scaling property

The unknown overhead occupies 60%~89%

of the overall checkpoint overheads

