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Methodology

 Lots of large-scale HPC systems are now adapting 

GPUs to achieve better performance

+ Multi-GPU applications such as MPI-CUDA

ones are being developed to exploit GPUs’ highly 

parallel computationality

 Fault tolerance obviously needs to be supported

+ ECC alone cannot tolerate hard failures

+ Checkpoint/restart is necessary
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Contructed followed by 3 steps:

 Pre-processing

+ Waiting until GPU’s kernel execution and

communication between CPU-GPU

+ Copy all the user data in the device 

memory to the host memory and destroy 

CUDA context

 BLCR

+ Have BLCR do checkpointing the CPU

state

 Post-processing

+ Copy copied data on CPU back to GPU and 

restore CUDA context
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Manage data objects on GPU

 Record GPU memory chunk sizes and addresses

 Use a custom memory allocator to allocate GPU memory 

regions in appropriate positions

+ Since GPU memory addresses allocated by 

cudaMalloc may change at restarting, we manage to keep 

them unchanged during checkpoint/restart

Manage code objects on GPU

 Keep track of data registered in the kernel generated by 

_cudaBinRegisterFatBinary、_cudaRegisterFunction

+ These data need to be registered again at restarting
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 Attach CUDA checkpointer to BLCR

+ Make use of user callback function in BLCR

 Prevent signal interruption during CUDA API execution by 

applying signal masking

+ Before each CUDA API execution, the signal handler is modified to perceive the

arrival of the checkpoint signal

+ After each CUDA API execution, the signal handler is returned back to the 

original one which handles checkpointing

+ If the checkpoint signal arrives in the middle of signal masking, it will be sent to 

the current thread to perform checkpointing

 Guarantee CUDA API’s proper execution in signal handler

+ We conducted tests to verify that CUDA APIs which are used in our CUDA 

checkpointer such as cudaMemcpy, cudaThreadSynchronize() perform properly 

in the signal context
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Overhead of pre-processing & post-processing is very small 

 Target: a simple CUDA program which allocates raw data 

with size varying from 100 MB to 1000 MB

 Checkpoint test is performed on one machine in Raccoon

Experiment Environment

Raccoon TSUBAME

CPU/Memory Intel i7 920 2.67GHz 

(4core/8thread) 12GB 

Memory

AMD Opteron 880 2.4GHz x 

8(16core) 32GB Memory

GPU/Memory Tesla C2050, 2.6GB Memory Tesla S1070, 4GB Memory

OS CENTOS 5.4 SUSE 10.3

BLCR 0.8.2 0.8.1

CUDA 3.0 2.3

Open MPI 1.4.2 1.4.2

Network Infiniband 4x DDR Infiniband 4x SDR

Local Disk SSD HDD

MPI CUDA checkpointer evaluation 

 Target: 3D Stencil MPI CUDA application

 Conduct a weak-scaling experiment with 

+# of procs:10~60   +Z-axis value: 100~600   +X&Y values are fixed at 256

 Unknown = (App runtime with ckpt) – (App runtime w/o ckpt) 

– (pre-processing + BLCR + post-processing)

Future Work

Problem 

size

# of 

procs

BLCR (s) Unkno

wn (s)

500x500

x500

50 25.1 307

500x500

x500

40 25.7 273

400x400

x400

40 14.5 87.9

Some costs depending on 

data size and # of procs are 

probably included in the 

unknown overhead

 Analyze details of the unknown overhead

 Improve CUDA checkpointer to support more CUDA  APIs
 Use diskless checkpointing to guarantee scalability
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All execution time increase, failing to get weak-scaling property

The unknown overhead occupies 60%~89% 

of the overall checkpoint overheads


