
Mastering multi-GPU computing on a torus network

INFN

5 The hardware of the APEnet+ card
Depending on the cluster dimension and requirements, the card can

be assembled in two ways:

• Basic one, single slot width, 4 torus links, 2D torus topology.

• Secondary Piggy-back card, resulting in a double slot width, 6 links,

3D torus topology.

The APEnet+ card plugs into a PCIe X16 slot but has signaling

capabilities for up to X8 Gen2 (peak 4+4 GB/s).

Each torus link is fully bidirectional and its raw bandwidth is 34Gb/s

per direction on 4 lanes using QSFP+ cables.

The expected power envelope is 80 Watts.

2 Going parallel
Computational demands roughly scale as L6 at increasing lattice length

(L), so parallelization is needed for all but the smallest volumes. In 2010

the estimated demands of a typical international scientific collaboration is

well over 60 TeraFlops sustained over the full year for lattice sizes up to

V=963×192.

LQCD, as other fundamental theories, posses many internal symmetries

which can be used to speed up the calculations. Among them there are:

- Isotropy, i.e. no special space-time locations, so the simulation lattice

can be sliced into sub-domains and distributed over many computing

nodes (Domain decomposition). Load balancing is automatically achieved.

- Locality, the interaction mainly involves neighboring space-time sites

(i.e. sparsity of matrix M), thus first-neighbor communications between

computing nodes are mostly needed.

Collective communications are used at key points in the algorithms to

calculate a few extensive (i.e. global) quantities, but they only involves

small sized buffers.

In a single numerical simulation, the minimum number of computing

elements is related to the lattice size, mainly due to memory

requirements. Many simulations at different lattice sizes are required due

to the extrapolation to the continuum limit (see table 1).

3 The hierarchy of parallelism
Mapping an LQCD simulation on a GPU accelerated cluster requires mastering

three different technologies throughout the hierarchy of parallelism:

• Coding the application kernels with CUDA or OpenCL to exploit the multiple

cores of a single GPU.

• Extending to multiple GPUs on a single node by the use of multi-threading

techniques: OpenMP/pthreads (or MPI with shared-memory communications).

• Going multi-node with some networking API, like MPI.

In the end, the application has to be written integrating different programming

models: CUDA /OpenCL+ OpenMP/pthreads + MPI.

We note that communicating data between two GPUs on different nodes requires

a three step procedure:

• cudaMemcpy() from GPU memory to some CPU temporary memory buffers.

• MPI_Send()/MPI_Recv()/MPI_Sendrecv() acting on those buffers.

• cudaMemcpy() from CPU buffers to GPU memory.

Without the use of NVIDIA GPUdirect technology, two additional memory copies

are necessary on modern interconnect like APEnet+ and Infiniband.

6 Logic architecture
The card firmware is programmed in VHDL and synthesized for the Altera

Stratix IV FPGA part. It resides on an on-card flash memory and can be

updated at run-time via either the PCIe or an external USB cable.

The majority of the logic modules are custom developed while the PCIe core

is a commercial one.

High level functionalities, like RDMA tables look-up, are carried on by a

program running on an FPGA embedded processor (NIOS II), which uses the

DDR3 module as its program and data memory.

The firmware block structure, depicted in the figure on the left, is split into a

so called network interface (PCIe ,TX/RX logic, NIOS II processor, etc…) and a

router (router component and torus links).

The router comprises a fully connected, 7 ports in, 7 ports out switch, plus

routing and arbitration blocks:

• The routing block examines a packet header and resolves the destination

address in a proper path across the switch. It supports the dimension ordered

routing algorithm, with a routing latency of 60ns.

• Deadlock avoidance is implemented via the virtual channels technique, with

2 receive buffers on the torus link module.

• Proper flow control is maintained via handshake of credits between a local

RX block and the remote TX block, embedded in the link protocol data layer.

7 Assembling the torus
The direct network design is intrinsically scalable as there is no need of external switch

components, which rapidly becomes expensive as the number of nodes goes beyond a few

thousands nodes.

The packet protocol provides space for 256 nodes for each dimension, i.e. theoretically up

to 224 computing nodes.

In figure 4 we depict one possible arrangement for a computing node: a 1U dual-socket

system with one GPU and one APEnet+ card. Just to give an idea of the cabling of a torus

network (see figure 3), we added figure 5 which is a shot of a 128 node cluster equipped

with a previous generation of APEnet cards assembled in 2005.

Thanks to the flexibility in the APEnet+ HW design, we can build both 2D and 3D torus

networks, as well as other less common topologies suited to specific applications.

The resulting cluster can be dynamically split into sub-partitions, to adapt to applications
and users demands. Partition choice is done at invocation of a modified mpirun program,

e.g. aperun –topo cube222 myprg., which can be easily integrated with your choice

of batch queuing system.

Acknowledgments
We really thanks NVIDIA Corp. for contributing keys technologies for APEnet+-GPU optimizations and especially to

Massimiliano Fatica, for his restless support and useful discussions.

R. Ammendola, A. Biagioni, O. Frezza, F. Lo Cicero, A. Lonardo, P.S. Paolucci, D. Rossetti*, A. Salamon, G. Salina,

F. Simula, L. Tosoratto, P. Vicini

(*) email contact: davide.rossetti@roma1.infn.it

9 GPU optimizations and future work
We are currently working on some GPU related optimizations:

- GPU-initiated communications: we are exploring the architectural extensions needed to

implement CUDA version of the APEnet RDMA transmission primitives, e.g. CUDA version

of rdma_put(), using so called PCIe peer-to-peer transactions and avoiding intermediate

copies onto CPU memory buffers.

- APEnet RDMA events delivery: we are implementing a RDMA event queue on GPU

memory, written in HW by the APEnet firmware and read in CUDA kernels.

- RDMA to GPU device memory: exploring usage of the GPU memory as an endpoint of

RDMA transactions (PUT or GET), implies the ability for the APEnet+ DMA engine to

read/write GPU memory completely in HW, without CUDA API calls on the CPU side.

The presence on the APEnet+ card of a programmable component with a lot of free

resources will allows us to explore reconfigurable computing, i.e. accelerating some tasks

directly in hardware.

Abstract
Many scientific computations need multi-node parallelism for both space (memory)

and time (speed) requirements. The use of GPUs as accelerators introduces yet

another level of complexity for the programmer and may potentially result in large

overheads due to bookkeeping of memory buffers. Additionally, top-notch problems

may easily require more than a PetaFlops of sustained computing power, requiring

thousands of GPUs orchestrated via some parallel programming model, mainly

Message Passing Interface (MPI). Here we describe APEnet+, the new generation[1]

of our 3D torus network which scales up to tens of thousands of cluster nodes with

linear cost. The basic component is a custom PCIe adapter with six high-speed links,

designed around a programmable HW component (FPGA), a nice environment for

studying integration techniques between GPUs and network interfaces. The high-

level programming model is MPI, while a low-level RDMA API is also available. As of

3Q10, we are testing the first prototypes, waiting for commissioning a first

production batch.

8 APEnet+ programming
All APEnet+ software runs under Linux and is available under the GNU GPL Licence. Two

sets of programming APIs are available, one is MPI and the other is a low-level custom

RDMA one.

The RDMA APIs are avaliable as a C language library:
- Communication primitives available to applications are: rmda_put(),rdma_get(),

rdma_send().

- Buffer registration allows for exposing memory buffers to RDMA primitives:
register_buffer(), unregister_buffer().

- Events are routed to applications whenever RDMA primitives are executed by APEnet+:
wait_event().

We adapted OpenMPI 1.X to APEnet+ developing an adaptation (BTL) module, which is

implemented on top of the RDMA API.

4 The APEnet+ network
• APEnet+ is a packet-based direct network with 2D/3D torus

topology.

• Packets have a fixed size envelope (header+footer) and are auto-

routed to their final destinations according to dimension-order static

routing, with dead-lock avoidance.

• Error detection is implemented via CRC at packet level.

• Basic RDMA capabilities, PUT and GET, are implemented at the

firmware level.

• Fault-tolerance features will be deployed during 2011.

router

7x7 ports switch

torus

link

torus

link

torus

link

torus

link

torus

link

torus

link

TX/RX

FIFOs &

Logic

routing

logic

arbiter

X
+

X- Y
+

Y- Z+ Z-

PCIe X8

Gen2 core

NIOS II

processor

collective

communicatio

n block

memory

controller

DDR3

Module

128@250MHz bus

PCIe X8 Gen2 8@5 Gbps

100/1000 Eth

port

A
lt
e
ra

S
tr

a
ti
x

IV

Figure 2: internal FPGA block architecture.

Figure 1: Three views of the APEnet+ card, showing the secondary board

which plugs on top of the main on to add two more links, thus enabling the

3D Torus with 6 links in total.

Figure 4: a sample 1U system with an APEnet+ card

and a GPU.

Figure 5: APE128 is a previous generation APEnet

cluster.

APE

group

Lattice size DP Memory (GiB) # Tesla C2070

243×48 2.1 1

323×64 6.7 2

483×96 34 6

643×128 108 18

Table 1: memory demand and required number of GPUs, at varying lattice size, including

contribution of secondary support buffers, using double precision (DP).

1 A problem of Physics
With first data coming out of the Large Hadron Collider (LHC) particle

accelerator, precise theoretical predictions from the Standard Model (SM) of

particle physics are necessary to match incoming experimental data, in a way

to assess presence of physical processes beyond those predicted by the SM.

The Quantum Chromo Dynamics (QCD), describing the nuclear force in the SM,

is a highly non-perturbative theory, so it needs some kind of regularization.

Lattice QCD[2] is the most successful regularized theory, living on a

discretized 4D space-time of volume V=LxLyLzLt lattice points, and high-

performance computers are needed to extract physical predictions from it.

The basic calculation is related to the solution of a linear problem:

Where M is a huge sparse matrix (non-zero values only along and near the

diagonal) representing the nuclear interaction force, y is given vector related

to a quark particle field, and x is the required solution. Most inversion

algorithms use matrix-vector multiplication as the basic ingredient.

The extrapolation to the continuum physics involves repeated simulations at

increasing lattice volumes 243×48, 323×64, 483×96, 643×128, 963×192, etc. The

double-length along time dimension is related to the computation of certain

physical quantities.

yxM
ˆ

Figure 3: a pictorial representation of a 16 nodes

cluster, arranged as a 4x2x2 torus.

Bibliography
[1] First generation APENet is described in arXiv:hep-lat/0409071.

[2] For an overview of Lattice QCD, arXiv:1002.4232v2 and references therein.

[3] APEnet web site is http://apegate.roma1.infn.it/APE

http://arxiv.org/abs/hep-lat/0409071v1
http://arxiv.org/abs/hep-lat/0409071v1
http://arxiv.org/abs/hep-lat/0409071v1
http://arxiv.org/abs/hep-lat/0409071v1
http://arxiv.org/abs/hep-lat/0409071v1
http://arxiv.org/abs/hep-lat/0409071v1
http://arxiv.org/abs/1002.4232v2
http://arxiv.org/abs/1002.4232v2
http://arxiv.org/abs/1002.4232v2
http://arxiv.org/abs/1002.4232v2
http://arxiv.org/abs/1002.4232v2
http://arxiv.org/abs/1002.4232v2
http://arxiv.org/abs/1002.4232v2
http://apegate.roma1.infn.it/APE

