
An Atomic Tesla: Avoiding the Power Wall
R. G. Edgar,1,2 M. D. Miller,2 R. E. Parrott,2 S. Sahrakorpi,2 J. Sircar2

1Initiative in Innovative Computing, Harvard University,
2School of Engineering and Applied Sciences, Harvard University

rge21@seas.harvard.edu

http://scigpu.org/

Tackling the ‘Power Wall’

Modern CPUs have a voracious appetite for electical power, creating the
‘power wall’ problem for supercomputer design. This is discussed in great
detail in DARPA’s Exascale Computing study (Kogge et al., 2008). Mod-
ern GPUs offer FLOP-per-Watt performance far better than contemporary
CPUs, and NVIDIA’s CUDA toolkit has enabled researchers to show how
useful GPUs can be for general purpose computation. GPUs merit seri-
ous consideration as the basis of an Exascale machine.
However, GPUs must be supported by a conventional CPU-based host,
to run an operating system and manage the GPU device. Most contem-
porary clusters use high-end server processors for this task. However, if
one can adopt the ‘Reverse Acceleration’ model developed at Los Alamos
National Laboratory for Roadrunner (Pakin, Lang and Kerbyson, 2010),
these CPUs are likely to be spending most time idling, leading us to con-
sider using a low power processor to manage the GPU.

Hardware

We compared the performance of an Intel Atom 330 CPU to conventional
clusters containing Intel Xeon L5410 (‘Harpertown’) and Intel Xeon E5540
(‘Gainestown’) CPUs. The CPUs were connected to rackmounted GPUs,
Tesla S1070s for the Atom and Harpertown clusters and QuadroPlex S4s
for the ‘Gainestown’ cluster.
Unfortunately, we were not able to procure equipment with identical PCIe
interfaces. The Atom system had a PCIe 1.0 x16 slot, the Harpertown
system a PCIe 2.0 x16 slot and the Gainestown system a PCIe 2.0 x8
slot.

Benchmarking

The three key metrics for our study are:

1. The latency of memory transfers between CPU and GPU
2. The bandwidth of these transfers
3. The latency of kernel launches on the GPU

Transfers between CPU and GPU
We copied contiguous blocks of data between pinned memory on the host
and the GPU device in our bandwidth test. Twenty such copies were com-

bined in a single timing, and each timing was performed twenty times for
each data size. We show the results for host-to-device copies in Figure 1
(device-to-host copies are similar).

 0.01

 0.015

 0.02

 0.025

 0.03

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

T
im

e
 (

m
s
)

MiB Copied

Atom
Latency = 16.3 microsec
Bandwidth = 2303.31 MiB/sec

Harpertown
Latency = 12.8 microsec
Bandwidth = 5546.41 MiB/sec

Gainestown
Latency = 13.0 microsec
Bandwidth = 2153.01 MiB/sec

Figure 1: Host to Device Bandwidth Timings for Atom, Harpertown and
Gainestown-based systems. Each data point is based on repeating
twenty copies twenty times. The error bars show the median and quartile
timings. The Atom system had a PCIe 1.0 x16 slot, the Harpertown sys-
tem a PCIe 2.0 x16 slot, and the Gainestown system a PCIe 2.0 x8 slot.
Latency and bandwidth values are from fitting a line to the median times.

The Gainestown results are much noisier than the other two, probably
due to this shared system being under heavier load than the other two.
However, we see that the Harpertown system (with its PCIe 2.0 x16 bus)
was approximately twice as fast as the other two, as expected from the
nominal bus speeds. Furthermore, the latency of transfers for the Atom
system is slightly greater than the other two systems. We experimented
with the BIOS settings of a Harpertown system, nominally changing the
PCIe 2.0 bus to PCIe 1.0. This cut the bandwidth to that of the Atom
system, while retaining the Harpertown latency.

Kernel Launch Latency
To measure the kernel launch latency, we used a kernel which zeroed
out a device array. By adjusting the number of threads and thread blocks
launched, the kernel launch latency could be determined. Figure 2 shows
our results for the three systems we tested. We see that the Atom sys-
tem had a kernel launch latency of around 9 µs, while the Harpertown and
Gainestown systems both had latencies around 4.5 µs.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 32768 65536 98304 131072 163840 196608 229376 262144

T
im

e
 (

m
s
)

Number of threads

Atom, 1 warp/block
Atom, 2 warp/block
Atom, 3 warp/block

Harpertown, 1 warp/block
Harpertown, 2 warp/block
Harpertown, 3 warp/block
Gainestown, 1 warp/block
Gainestown, 2 warp/block
Gainestown, 3 warp/block

Figure 2: Kernel Timings for Atom, Harpertown and Gainestown-based
systems. A simple kernel zeroed out an array on the device, with varying
numbers of threads and thread blocks launched. The Atom system had
a PCIe 1.0 x16 slot, the Harpertown system a PCIe 2.0 x16 slot, and the
Gainestown system a PCIe 2.0 x8 slot. The kernel launch latency is in-
ferred to be the y-intercept of the curves, around 9 µs for the Atom system
and around 4.5 µs for the Harpertown and Gainestown systems.

Conclusions

The Atom-based system held its own in these tests, with little impact on
the operation of the GPU. Power draw for the entire Atom system (includ-
ing its integrated GeForce 9400M chipset and hard drive) was less than
50 W under load. Further work is needed using production codes and with
identical PCIe interfaces. However, for codes with serial sections small
enough to make Amdahl’s Law irrelevant, Atom-based host systems are
viable candidates.

Acknowledgements

The authors acknowledge financial support provided through NSF Award
PHY-0835713. Harvard University has been named a CUDA Center of
Excellence by NVIDIA, and has received several hardware donations
which were used in this work. Some results were obtained using the
longhorn machine of the Texas Advanced Computing Center, through
allocation TG-AST100022.

NVIDIA GTC 2010, San Jose, CA

