
RUPRECHT KARL

UNIVERSITY

OF

HEIDELBERG

Implementation of Smith-Waterman algorithm in OpenCL for GPUs
Dzmitry Razmyslovich1, Guillermo Marcus1, Markus Gipp1, Marc Zapatka2 and Andreas Szillus2

1Institute of Computer Engineering (ZITI),

University of Heidelberg,

Mannheim, Germany

Main contact: dzmitry.razmyslovich@ziti.uni-heidelberg.de

Other contacts: see http://li5.ziti.uni-heidelberg.de

2German Cancer Research Center,

Heidelberg, Germany

Email: m.zapatka, a.szillus@dkfz-heidelberg.de

Abstract
We present the implementation of Smith-

Waterman algorithm done in OpenCL. This

implementation is capable of computing

similarity indexes between query sequences

and a reference sequence with or without

sequence alignment paths. In accordance with

the requirement for the target application in

cancer research the implementation provides

processing of very long reference sequences

(in the order of millions of nucleotides).

Biological Problem Description
All cancers are results of changes (aberrations) occurred

in the DNA sequence of the genomes of cancer cells. The

identification of even most complex aberrations can be

done with Smith-Waterman algorithm by processing a

long reference sequence and short query sequences. The

former is a genome sequence which can be rather long

while the latter are the product of the second-generation

technology. The basic problem solved with the

implementation presented lies in an alignment of short

query sequences along a long reference sequence.

Smith-Waterman Algorithm
The idea of alignment lies in filling the nxm matrix H, the similarity matrix, where n is the number of elements in a query sequence and m is the

number of elements in a reference sequence. The values of the matrix are computed using dynamic programming according to formula 1.

Each value H[i; j] is the measure of similarity of two subsequences: a query sequence up to the i-th element and a reference sequence up to the

j-th element.

The data size requirements put limits to the possibility of storing the matrix. It is necessary to use

online computation of the paths. It means calculating the paths for the already calculated part of

the matrix and truncating the matrix concurrently with computation of a new piece of the matrix.

Choosing a nucleotide from a query sequence as a parallelization grain makes online computation

possible.

Step 1. The long reference sequence processing and online computation Step 2. The diamond calculation shape

Step 3. The multiquery processing Step 4. The concurrent data transfer and kernel execution

The no path calculating model

Conclusion
Implementation strengths:

Principal advantage: alignment paths

calculation;

Efficient processing of long reference

sequences (up to 28 million in the tests);

High performance characteristics:

• on GTX 480 (Fermi): competitive to

CUDASW++v2.0.1 implementation and

4.5x as fast as Farrar’s implementation;

• on GTX 260: competitive to Farrar’s

implementation and 3x as fast as

CUDASW++v2.0 implementation;

• the acceleration in comparison with our

CPU implementation is 14.5x for the path

calculating version and 610x for the no

path calculating version;

Heterogeneous platform independence.

Results

mjni

jiSjiH

RFjiH

IFjiH
jiH

mjjH

niiH

1,1

,

),(]1,1[

]1,[

],1[

0

max],[

,0,0],0[

,0,0]0,[

In most cases vast amount of sequencer data must be filtered

at the beginning. This task only requires similarity values

Comparison of OpenCL implementation with other ones

The possibility of faster computation of solely similarity values

NO PATH

CALCULA

TING

 VERSION

Initialization – performs some calculations

to make the wavefront technique usable

Calculating – calculates the whole matrix

excluding heading and ending

Finishing – calculates the ending with

saving the results

Calculating

Initialization

Finishing

calculation of a new piece of the matrix

calculation of a new optimal path

together with truncating the current matrix

GPU

CPU

P

R

O

C

E

S

S

Computation time

0

0,5

1

1,5

2

2,5

7840 14980 49980 62930

A
v
e
ra

g
e
 c

o
m

p
u
ta

ti
o
n
 t

im
e
 p

e
r

q
u
e
ry

 (
m

s
)

Reference sequence length (the number of nucleotides)

Farrar (GTX 260) OpenCL without paths (GTX260)

CudaSW++v2.0 (GTX260)

Reference

Q
u

e
ry

75 642 3

64 5

86 7

108 9

97 8

119 10

1311 12

108 9

1210 11

1412 13

14 15

15

1513 14

1311 12 14 151

3

5

7

1 2

2 3

3 4

4 5

3 4 5 6

4 5 6 7

5 6

6 7

7 8

8 9

7 8 9 10

8 9 10 11

9 10

10 11

11

11

Reference

Q
u

e
ry

The values calculated with the preprocessing

kernel function

The values calculated with the main kernel

function

0 0 00 0

0

0

0

0

h11 h12 h13 h14

h21 h22 h23

h31 h32

h41 W
A
V
E
FR

O
N
T

0

500

1000

1500

2000

2500

3000

3500

0,00E+00 5,00E+06 1,00E+07 1,50E+07 2,00E+07 2,50E+07 3,00E+07A
v
e
ra

g
e
 c

o
m

p
u
ta

ti
o

n
 t
im

e
 p

e
r

q
u
e
ry

 (
m

s
)

Reference sequence length (the number of nucleotides)

GeForce GTX 260 (with paths) GeForce GTX 260 (without paths)

GeForce GTX 480 – Fermi (with paths) GeForce GTX 480 – Fermi (without paths)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

7840 14980 49980 62930

A
v
e
ra

g
e
 c

o
m

p
u
ta

ti
o
n
 t

im
e
 p

e
r

q
u
e
ry

 (
m

s
)

Reference sequence length (the number of nucleotides)

Farrar (GTX480)

OpenCL without paths (GTX480)

CudaSW++v2.0.1 (GTX480)

0 0 0 + iqsignjiHjiH ,, =

Query 1

Query 2

Query k

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

Similarity matrix for

query 1 and the

reference sequence

Similarity matrix for

query 2 and the

reference sequence

Similarity matrix for

query k and the

reference sequence

Query 1

Query 2

Query k

Query 1 Query 2 Query k

Test space includes:

• a reference sequence: the sequence of chromosome 21 - circa 28 million nucleotides in

length (from the NCBI Build 36 of the human reference assembly);

• query sequences: a set of 36 nucleotide long reads of equal length from an Illumina genome

analyzer.

We use a computation time to measure the performance. The computation time includes:

• the kernel execution scheduling time,

• the kernel execution time,

• device-to-host data transferring time (for the version with path calculating),

• the paths calculation time (for the version with path calculating),

• device-to-host results transferring time (for the version without path calculating).

Test platform:

• the NVIDIA GeForce GTX 260 GPU with 1.75GB of RAM, 30 multiprocessors and 216

cores;

• the NVIDIA GeForce GTX 480 GPU with 1.5GB of RAM, 15 multiprocessors and 480

cores;

• the Intel i7-920 CPU;

• 6GB of RAM;

• the Linux OS with the installed NVIDIA GPU Computing SDK 3.1.
The bandwidth of 5.9 GB/s

was reached in the tests. The

index doesn’t depend on the

tests data.

R1

R2

P1

P2 J
P3

the optimal path P1 for the matrix

the optimal path P2 for the similarity matrix for the reference sequence R2 and the query

sequence Q

another optimal path P3 for the renewed matrix; P3 is assembled by merging the part of P2

from the end of the renewed matrix to the junction J and the part of P1 from J to the top row

of the old matrix

the useless part of the matrix (can be truncated just before the calculation of the new optimal

path)

The already calculated similarity matrix for a reference sequence R1 and the query

sequence Q

a newly calculated piece of the matrix constructing together with the matrix the

similarity matrix for a reference sequence R2 and the query sequence Q

Calculating a window of the matrix together with

transferring the previous window and its processing

is possible, due to the independent functionality of

the GPU DMA controller and GPU multiprocessors.

And since path calculating and matrix block

calculating tasks are processed with different

devices, these tasks can also be handled

concurrently. To enable the possibility to overlap

data transferring and kernel execution, a ring buffer

is allocated in device memory.

P

R

O

C

E

S

S

Host initialization

Input data transfer

Scheduling running

Precalculation kernel

Calculation kernel

Matrix transfer to host memory

Path calculations

Printing results

G
P

U
C

P
U

C
P

U

P
a

th
s

M
e

m
o

ry

tr
a

n
s
fe

r

t

t

t

t

Transfer

Transfer

Transfer

Calculation

Calculation

Calculation

G
P

U
C

P
U

C
P

U

P
a

th
s

M
e

m
o

ry

tr
a

n
s
fe

r

t

t

t

t

http://li5.ziti.uni-heidelberg.de/
http://li5.ziti.uni-heidelberg.de/
http://li5.ziti.uni-heidelberg.de/

