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Abstract
We present the implementation of Smith-

Waterman algorithm done in OpenCL. This

implementation is capable of computing

similarity indexes between query sequences

and a reference sequence with or without

sequence alignment paths. In accordance with

the requirement for the target application in

cancer research the implementation provides

processing of very long reference sequences

(in the order of millions of nucleotides).

Biological Problem Description
All cancers are results of changes (aberrations) occurred

in the DNA sequence of the genomes of cancer cells. The

identification of even most complex aberrations can be

done with Smith-Waterman algorithm by processing a

long reference sequence and short query sequences. The

former is a genome sequence which can be rather long

while the latter are the product of the second-generation

technology. The basic problem solved with the

implementation presented lies in an alignment of short

query sequences along a long reference sequence.

Smith-Waterman Algorithm
The idea of alignment lies in filling the nxm matrix H, the similarity matrix, where n is the number of elements in a query sequence and m is the

number of elements in a reference sequence. The values of the matrix are computed using dynamic programming according to formula 1.

Each value H[i; j] is the measure of similarity of two subsequences: a query sequence up to the i-th element and a reference sequence up to the

j-th element.

The data size requirements put limits to the possibility of storing the matrix. It is necessary to use

online computation of the paths. It means calculating the paths for the already calculated part of

the matrix and truncating the matrix concurrently with computation of a new piece of the matrix.

Choosing a nucleotide from a query sequence as a parallelization grain makes online computation

possible.

Step 1. The long reference sequence processing and online computation Step 2. The diamond calculation shape

Step 3. The multiquery processing Step 4. The concurrent data transfer and kernel execution

The no path calculating model

Conclusion
Implementation strengths:

Principal advantage: alignment paths

calculation;

Efficient processing of long reference

sequences (up to 28 million in the tests);

High performance characteristics:

• on GTX 480 (Fermi): competitive to

CUDASW++v2.0.1 implementation and

4.5x as fast as Farrar’s implementation;

• on GTX 260: competitive to Farrar’s

implementation and 3x as fast as

CUDASW++v2.0 implementation;

• the acceleration in comparison with our

CPU implementation is 14.5x for the path

calculating version and 610x for the no

path calculating version;

Heterogeneous platform independence.

Results
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In most cases vast amount of sequencer data must be filtered 

at the beginning. This task only requires similarity values

Comparison of OpenCL implementation with other ones

The possibility of faster computation of solely similarity values
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Initialization – performs some calculations 

to make the wavefront technique usable

Calculating – calculates the whole matrix 

excluding heading and ending

Finishing – calculates the ending with 

saving the results

Calculating

Initialization

Finishing

calculation of a new piece of the matrix

calculation of a new optimal path 

together with truncating the current matrix
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Test space includes:

• a reference sequence: the sequence of chromosome 21 - circa 28 million nucleotides in

length (from the NCBI Build 36 of the human reference assembly);

• query sequences: a set of 36 nucleotide long reads of equal length from an Illumina genome

analyzer.

We use a computation time to measure the performance. The computation time includes:

• the kernel execution scheduling time,

• the kernel execution time,

• device-to-host data transferring time (for the version with path calculating),

• the paths calculation time (for the version with path calculating),

• device-to-host results transferring time (for the version without path calculating).

Test platform:

• the NVIDIA GeForce GTX 260 GPU with 1.75GB of RAM, 30 multiprocessors and 216

cores;

• the NVIDIA GeForce GTX 480 GPU with 1.5GB of RAM, 15 multiprocessors and 480

cores;

• the Intel i7-920 CPU;

• 6GB of RAM;

• the Linux OS with the installed NVIDIA GPU Computing SDK 3.1.
The bandwidth of 5.9 GB/s

was reached in the tests. The

index doesn’t depend on the

tests data.

R1

R2

P1

P2 J
P3

the optimal path P1 for the   matrix

the optimal path P2 for the similarity matrix for the reference sequence R2 and the query 

sequence Q

another optimal path P3 for the renewed matrix; P3 is assembled by merging the part of P2 

from the end of the renewed matrix to the junction J and the part of P1 from J to the top row 

of the old matrix

the useless part of the matrix (can be truncated just before the calculation of the new optimal 

path)

The already calculated similarity matrix for a reference sequence R1 and the query

sequence Q

a newly calculated piece of the matrix constructing together with the  matrix the 

similarity matrix for a reference sequence R2 and the query sequence Q

Calculating a window of the matrix together with 

transferring the previous window and its processing 

is possible, due to the independent functionality of 

the GPU DMA controller and GPU multiprocessors. 

And since path calculating and matrix block 

calculating tasks are processed with different 

devices, these tasks can also be handled 

concurrently. To enable the possibility to overlap 

data transferring and kernel execution, a ring buffer 

is allocated in device memory.
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Precalculation kernel
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Matrix transfer to host memory
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Printing results
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