Computing Strongly Connected Components
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The problem of decomposition of a directed graph into its
strongly connected components is a fundamental graph prob-
lem inherently present in many scientific and commercial appli-
cations. We show how existing parallel algorithms can be refor-
mulated in order to be accelerated by NVIDIA CUDA technology.
We design a new CUDA-aware procedure for pivot selection and
we redesign the parallel algorithms in order to allow for CUDA
accelerated computation. We experimentally demonstrate that
with a single GTX 280 GPU card we can easily outperform opti-
mal serial CPU algorithm. This poster is based on the technical
report [2].

1. Problem and Motivation

SCC decomposition and its application

e problem of decomposing a directed graph into its strongly con-
nected components (a maximal set of vertices such that any
two vertices are mutually reachable)

e many applications leading to very large graphs and requiring
high performance processing

e web analysis based on web archives such as topic tracking,
time-frequency analysis of blog postings, and web community
extraction

e automated verification of hardware and software such as
model checking, dataflow analysis, and bad cycle detection;
SCC decomposition is used as a sub-procedure and its fast
performance is crucial

Parallel SCC decomposition is a tricky problem

e optimal serial Tarjan’s algorithm [7] strongly relies on depth first
search post ordering of vertices whose computation is known
to be P-complete and thus, difficult to be computed in parallel

e asymptotic complexity of the known parallel algorithms is not
optimal

e multi-core implementations of the parallel algorithms for the
standard parallel shared-memory platforms were not able to
outperform Tarjan’s algorithm
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Figure 3: Run-times for Random graphs in milliseconds.

4. Experimental Evaluation

Hardware setting

e Linux workstation with a quad core AMD Phenom |l X4 940
Processor @ 3GHz, 8 GB DDR2 @ 1066 MHz RAM

e NVIDIA GeForce GTX 280 GPU with 1GB of GPU RAM
Inputs graphs
e Georgia Technology graph generator suite [1]:

— Erd6s-Rényi random graph generator (Random)
— Scalable Synthetic Compact Applications (SSCA)
— Recursive Matrix generator (R-MAT)

e graphs produced by model checker DiVinE [3]
Comparison of the following algorithms is provided

e serial CPU-based forward reachability (CPU REACH)

e parallel CUDA-based forward reachability (GPU REACH)
e optimal serial Tarjan’s algorithm

e CUDA-based FB algorithm (+ trimming)

e CUDA-based COLORING algorithm

e CUDA-based OBF algorithm (+ trimming, coloring)
Results of experimental evaluation

e run-times of the best versions of the individual algorithms are
plotted in Figures 3, 4, 5 and 6

e performance of CUDA-based algorithms deeply depends on
the average degree of the vertices in the graph
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2. Parallel Algorithms for SCC Decomposition

e Forward-Backward Algorithm (FB) [5]

— key steps of the algorithm are depicted in Figure 1

e Coloring/Heads-off algorithm (COLORING) [6]
e Recursive OBF algorithm (OBF) [4]
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2. step: Computation of backward reachability.

O New pivots.
Independent subgraphs.

3. step: Identification of a component and next iteration of the algorithm.

Each idependent subgraph 1s recursively processed 1n parallel.

Figure 1: Key steps of the Forward-Backward Algorithm.
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Figure 4: Run-times for R-MAT graphs in milliseconds.

e the scalability and efficiency of the parallel reachability proce-

dure effectively limit scalability and efficiency of SCC decom-
position algorithms

e with a single GTX 280 GPU card the optimal serial Tarjan’s

algorithm can be easily outperformed
—random graphs - 17 x speedup

— R-MAT graphs - 12 x speedup

— SCCA graphs - 3 x speedup

— model checking graphs - 3 x speedup
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Figure 6: Run-times for model checking graphs in milliseconds.

222 Found SCC component.

3. CUDA Accelerated SCC Decomposition

Graph representation

e appropriate adjacency list representation; dynamically linked
adjacency list violates the memory requirements

e two one-dimensional arrays; one array stores the target ver-
tices of edges sorted according to source vertex and the sec-
ond array keeps indexes to the first edge emanating from the

vertex (Figure 2)
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Figure 2: Adjacency list representation.

Redesign of the parallel algorithms

e reformulation of the recursion present in the algorithms by
means of iterative procedures executed simultaneously over
multiple independent subgraphs

— forward and backward reachability restricted to the particular
subgraphs

—trimming - effective identification of trivial components by it-
erative elimination of vertices with no immediate predeces-
SOI'S Or SUCCEesSOors

— pivot selection - selection of a single vertex for each sub-
graph; crucial for practical performance

e each procedure corresponding to one kernel - in the case of
OBF algorithm more complicated parallelization is necessary
to obtain significant speedup

e separate thread for every vertex is defined

e each thread checks if the corresponding vertex satisfies the
given property, and if so, it sets the bit represeting the property
for all iImmediate successors of the vertex

e algorithm performance is limited by memory bandwidth since
for each vertex update only few instructions are executed
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Figure 5: Run-times for SCCA graphs in milliseconds.

¢ NO clear winner among the particular parallel algorithms

e for the synthetic graphs (small number of large components)
FB algorithm with trimming has the best times

e for model checking graphs (bigger number of large compo-
nents) OBF algorithm has the best times

e COLORING algorithm exhibits unstable performance

e effective utilization of multiple CUDA devices

e employing of the hierarchical memory of the upcoming gener-
ation of CUDA Fermi cards
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