Computing Strongly Connected Components

1= ParaDiSe

Parallel & Distributed
0 Systems Laboratory

Faculty of Informatics, Masaryk University, Brno, Czech R

The problem of decomposition of a directed graph into its
strongly connected components is a fundamental graph prob-
lem inherently present in many scientific and commercial appli-
cations. We show how existing parallel algorithms can be refor-
mulated in order to be accelerated by NVIDIA CUDA technology.
We design a new CUDA-aware procedure for pivot selection and
we redesign the parallel algorithms in order to allow for CUDA
accelerated computation. We experimentally demonstrate that
with a single GTX 280 GPU card we can easily outperform opti-
mal serial CPU algorithm. This poster is based on the technical
report [2].

1. Problem and Motivation

SCC decomposition and its application

e problem of decomposing a directed graph into its strongly con-
nected components (a maximal set of vertices such that any
two vertices are mutually reachable)

e many applications leading to very large graphs and requiring
high performance processing

e web analysis based on web archives such as topic tracking,
time-frequency analysis of blog postings, and web community
extraction

e automated verification of hardware and software such as
model checking, dataflow analysis, and bad cycle detection;
SCC decomposition is used as a sub-procedure and its fast
performance is crucial

Parallel SCC decomposition is a tricky problem

e optimal serial Tarjan’s algorithm [7] strongly relies on depth first
search post ordering of vertices whose computation is known
to be P-complete and thus, difficult to be computed in parallel

e asymptotic complexity of the known parallel algorithms is not
optimal

e multi-core implementations of the parallel algorithms for the
standard parallel shared-memory platforms were not able to
outperform Tarjan’s algorithm

CPU REACH ——
GPU REACH ---x---

10000 | © Tarms me e
: FB g % NSRS - 3]
Coloring --#- e |

—
-]
-
-

Time (msec.)

10 ; ; ; ; ; ;
1 2 3 4 5 6 7 8

Number of vertices in millions (average degree 12)

Figure 3: Run-times for Random graphs in milliseconds.

4. Experimental Evaluation

Hardware setting

e Linux workstation with a quad core AMD Phenom |l X4 940
Processor @ 3GHz, 8 GB DDR2 @ 1066 MHz RAM

e NVIDIA GeForce GTX 280 GPU with 1GB of GPU RAM
Inputs graphs
e Georgia Technology graph generator suite [1]:

— Erd6s-Rényi random graph generator (Random)
— Scalable Synthetic Compact Applications (SSCA)
— Recursive Matrix generator (R-MAT)

e graphs produced by model checker DiVinE [3]
Comparison of the following algorithms is provided

e serial CPU-based forward reachability (CPU REACH)

e parallel CUDA-based forward reachability (GPU REACH)
e optimal serial Tarjan’s algorithm

e CUDA-based FB algorithm (+ trimming)

e CUDA-based COLORING algorithm

e CUDA-based OBF algorithm (+ trimming, coloring)
Results of experimental evaluation

e run-times of the best versions of the individual algorithms are
plotted in Figures 3, 4, 5 and 6

e performance of CUDA-based algorithms deeply depends on
the average degree of the vertices in the graph

in Parallel on CUDA

Jifi Barnat, Petr Bauch, Lubo$ Brim, and Milan Ceska
epublic

2. Parallel Algorithms for SCC Decomposition

e Forward-Backward Algorithm (FB) [5]

— key steps of the algorithm are depicted in Figure 1

e Coloring/Heads-off algorithm (COLORING) [6]
e Recursive OBF algorithm (OBF) [4]

‘ Pivot.

/. Forward reachability.

‘ Pivot.
~: Forward reachability.
.. Backward reachability.

Oz, 7
R R
SR

)

2. step: Computation of backward reachability.

O New pivots.
Independent subgraphs.

3. step: Identification of a component and next iteration of the algorithm.

Each idependent subgraph 1s recursively processed 1n parallel.

Figure 1: Key steps of the Forward-Backward Algorithm.

|
CPU REACH —+— | | | |
GPU REACH ---x--- | | | i
10000 | TAas - - o —
i FB g | | | ereere i i

Coloring === gt
OBF -:-0--

s

“‘-
.
I“

—
-]
-]
-

Time (msec.)

1 2 3 4 5 6 7 8
Number of vertices in millions (average degree 12)

Figure 4: Run-times for R-MAT graphs in milliseconds.

e the scalability and efficiency of the parallel reachability proce-

dure effectively limit scalability and efficiency of SCC decom-
position algorithms

e with a single GTX 280 GPU card the optimal serial Tarjan’s

algorithm can be easily outperformed
—random graphs - 17 x speedup

— R-MAT graphs - 12 x speedup

— SCCA graphs - 3 x speedup

— model checking graphs - 3 x speedup

CPU REACH D

10000 |GPU REACH ==
Tarjan’s =
FB o |
Coloring memsm
OBF s

w RN

100

Time (msec.)

10 |

Figure 6: Run-times for model checking graphs in milliseconds.

222 Found SCC component.

3. CUDA Accelerated SCC Decomposition

Graph representation

e appropriate adjacency list representation; dynamically linked
adjacency list violates the memory requirements

e two one-dimensional arrays; one array stores the target ver-
tices of edges sorted according to source vertex and the sec-
ond array keeps indexes to the first edge emanating from the

vertex (Figure 2)
Vi
263033

11

O 1 2 3 4 5 6 7

/ /‘.\

10| 8| 515|110

Figure 2: Adjacency list representation.

Redesign of the parallel algorithms

e reformulation of the recursion present in the algorithms by
means of iterative procedures executed simultaneously over
multiple independent subgraphs

— forward and backward reachability restricted to the particular
subgraphs

—trimming - effective identification of trivial components by it-
erative elimination of vertices with no immediate predeces-
SOI'S Or SUCCEesSOors

— pivot selection - selection of a single vertex for each sub-
graph; crucial for practical performance

e each procedure corresponding to one kernel - in the case of
OBF algorithm more complicated parallelization is necessary
to obtain significant speedup

e separate thread for every vertex is defined

e each thread checks if the corresponding vertex satisfies the
given property, and if so, it sets the bit represeting the property
for all iImmediate successors of the vertex

e algorithm performance is limited by memory bandwidth since
for each vertex update only few instructions are executed

|
| CPU REACH —+— |]
-GPU REACH ---»--- 4
Tarjan’s ---%---
EB | | .
Coloring --#- T

-t
'
——————
—————

10000 |

—
o
-]
-

Time (msec.)

100 ¢

1 2 3 4 5 6 7 8
Number of vertices in millions (average degree 12)

Figure 5: Run-times for SCCA graphs in milliseconds.

¢ NO clear winner among the particular parallel algorithms

e for the synthetic graphs (small number of large components)
FB algorithm with trimming has the best times

e for model checking graphs (bigger number of large compo-
nents) OBF algorithm has the best times

e COLORING algorithm exhibits unstable performance

e effective utilization of multiple CUDA devices

e employing of the hierarchical memory of the upcoming gener-
ation of CUDA Fermi cards

References

[1] D.A. Bader and K. Madduri. GTgraph: A Synthetic Graph Generator Suite. Technical Report
GA 30332, Georgia Institute of Technology, Atlanta, 2006.

[2] J. Barnat, P. Bauch, L. Brim, and M. Ceska. Computing Strongly Connected Components in
Parallel on CUDA (full version). Technical Report FIMU-RS-2010-10, Faculty of Informatics,
Masaryk University, July 2010.

[3] J. Barnat, L. Brim, L. Cerna, P. Moravec, P. Ro¢kai, and P. Simeéek. DiVinE — A Tool for Dis-
tributed Verification (Tool Paper). In CAV °06, volume 4144/2006 of LNCS, pages 278-281.
Springer, 2006.

[4] J. Barnat, J. Chaloupka, and J. C. van de Pol. Improved Distributed Algorithms for SCC
Decomposition. In PDMC, pages 65—-80. University of Twente, 2007.

[5] L. K. Fleischer, B. Hendrickson, and A. Pinar. On ldentifying Strongly Connected Compo-
nents in Parallel. In IPDPS °00, volume 1800 of LNCS, pages 505-511. Springer, 2000.

[6] S. Orzan. On Distributed Verification and Verified Distribution. PhD thesis, Free University
of Amsterdam, 2004.

[7] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing,
1:146-160, 1972.

