
A CUDA Runtime Target for the Sequoia Compiler
Michael Bauer, John P. Clark, Eric Schkufza, Alex Aiken

Stanford University

http://sequoia.stanford.edu

The Sequoia Programming Model

Programming in Sequoia

Mapping Sequoia onto CUDA

Eliminating Host-Device Copies

Targeting Multiple GPUs

Conclusion and Future Work

The Sequoia programming model is

designed for writing locality-aware,

portable parallel programs for deep

memory hierarchies. In order to

accomplish this, Sequoia presents

an abstract machine model to the

programmer that is a tree of

memories (Figure 1). The

programmer has no specific

information about this tree of

memories (i.e. depth or branching

factor), but can assume that each

level is progressively smaller and

contains more powerful processing

elements as one gets closer to the

leaves.

This abstraction is capable of

representing machines with many

different levels of memory;

everything from a desktop PC to

clusters of SMPs with Cell or GPU

accelerators (Figure 2). In addition,

because the program is written for

an abstract memory hierarchy the

program is easily portable to

machines without any source code

modifications.

Figure 1. Sequoia Abstract Machine Model

ALUs ALUs

Main memory

L1 cache L1 cache

L2 cache

ALUs ALUs

Main memory

L1 cache L1 cache L2 cache

ALUs

Node

memory

Aggregate cluster memory

(virtual level)

L1 cache

L2 cache

ALUs

Node

memory

L1 cache

L2 cache

ALUs

Node

memory

L1 cache

L2 cache

ALUs

Node

memory

L1 cache

Figure 2. Capturing a dual-core CPU and

cluster of CMPs in the Sequoia machine model

The primary unit of

computation in Sequoia is a

task. Tasks are pure functions

whose entire working set must

be described by the arguments

to the task. Tasks provide

isolation from other tasks and

also provide locality information

to the compiler by describing

their working set.

There are two types of tasks:

• inner: these tasks describe

how to partition data and

work into sub-tasks

• leaf: these tasks perform

computation

It is the goal of the programmer

to map tasks onto the memory

hierarchy.

Tasks are parameterized using

tunable variables that are

specified in a special mapping

file at compile-time. This

enables tasks to be portable

across different architectures.

Figure 3. Example matrix multiplication in Sequoia

CUDA Sequoia

Types of

Parallelism
- Data parallelism

- Task parallelism

- Data parallelism

- Task parallelism

- Nested parallelism

Synchronization

Mechanisms

- Intra-CTA

- Across kernels
- Synchronous task

launching

Memory Latency

Hiding

- Interleave fine-

grained data

parallel comp.

- Overlap task

execution and

communication

Figure 4. A comparison between the Sequoia and CUDA programming models

In order for the Sequoia compiler to be able to target GPUs, we have to be able to map

the Sequoia programming model onto the CUDA programming model. This requires

that all the features of the Sequoia language can be expressed in CUDA. Figure 4

gives a simple illustration of some of the important differences between Sequoia and

CUDA.

When targeting Sequoia to CUDA, we ignore the CUDA abstract machine model and

instead allow Sequoia to leverage its knowledge of the program to target the device

directly. We therefore only launch as many cooperative thread arrays (CTAs) as there

are streaming multiprocessors (SMs) on the device. The Sequoia compiler is then

able to map tasks directly onto the SMs rather than simply launching CTAs and

trusting the hardware to schedule them efficiently.

COPY

Host Host

B

A

COPY

C
Device

COPY

A C
Device

Figure 5. An example of one form of copy-elimination performed by Sequoia

One advantage of the Sequoia programming model is task working sets are explicit.

By coupling this information with the compiler’s knowledge of where tasks are

scheduled to be run in the memory hierarchy, the compiler is able to create an

intermediate representation rich enough to perform copy elimination. Since Sequoia

deals with bulk transfers of data rather than individual variables, every eliminated

copy results in significant performance gains.

In the context of CUDA, this is most noticeable when dealing with copies between

host and device memories. Sequoia is able to reason about reuse of data across

kernel calls and thereby avoiding moving data unnecessarily between the host and

device. There are several different copy elimination patterns that the Sequoia

compiler is capable of recognizing, one of which is illustrated in Figure 5.

CPU

GPU

MEMORY

Shared Shared…

GPU

MEMORY

Shared Shared…

…

Sequoia

CMP

Runtime

Sequoia

GPU

Runtime

Figure 6. Sequoia representation of a multi-GPU system

A major challenge with CUDA currently is programming multi-GPU systems.

Sequoia is easily able to handle multiple GPU systems since its runtimes

easily compose. Using a CMP runtime Sequoia is able to launch multiple

threads on the CPU (one for managing each GPU). The CMP runtime easily

composes with the GPU runtime enabling Sequoia programs to run on

systems with multiple GPUs. Sequoia can even place a cluster runtime on

top of the CMP runtime to make it possible to target large MPI clusters with

multiple GPU accelerators per node.

The Sequoia programming model makes it easy to write portable

programs that can be mapped to GPUs. Sequoia enables optimizations

that minimize the overhead of writing efficient GPU code. In addition,

Sequoia gives the programmer the power to target multi-GPU machines.

No performance results are presented here as we are hoping to publish

them in an upcoming paper. In addition to this there are several

additional optimizations that we hope to complete before demonstrating

Sequoia’s performance on GPU accelerated machines.

Our planned future optimizations include:

• Software Pipelining – the ability to overlap communication with

computation is an important scheduling optimization for the Sequoia

compiler. We plan to implement this feature at two granularities: for

kernels running on the device as well as for tasks running within CTAs.

• Memory Coalescing – we plan on using the compiler’s knowledge of the

program to optimize data layout in order to exploit the GPU’s ability to do

memory coalescing operations. This is even more important in the

context of ECC which adds significant overhead to memory writes for

supercomputing applications.

• Irregular parallelism – support for irregular parallelism will become an

important feature as a wider variety of applications are beginning to be

ported to GPUs

