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The Sequoia programming model is 

designed for writing locality-aware, 

portable parallel programs for deep 

memory hierarchies.  In order to 

accomplish this, Sequoia presents 

an abstract machine model to the 

programmer that is a tree of 

memories (Figure 1).  The 

programmer has no specific 

information about this tree of 

memories (i.e. depth or branching 

factor), but can assume that each 

level is progressively smaller and 

contains more powerful processing 

elements as one gets closer to the 

leaves.

This abstraction is capable of 

representing machines with many 

different levels of memory; 

everything from a desktop PC to 

clusters of SMPs with Cell or GPU 

accelerators (Figure 2).  In addition, 

because the program is written for 

an abstract memory hierarchy the 

program is easily portable to 

machines without any source code 

modifications.

Figure 1. Sequoia Abstract Machine Model
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Figure 2. Capturing a dual-core CPU and 

cluster of CMPs in the Sequoia machine model

The primary unit of 

computation in Sequoia is a 

task.  Tasks are pure functions 

whose entire working set must 

be described by the arguments 

to the task.  Tasks provide 

isolation from other tasks and 

also provide locality information 

to the compiler by describing 

their working set.

There are two types of tasks:

• inner: these tasks describe 

how      to partition data and 

work into sub-tasks

• leaf: these tasks perform 

computation

It is the goal of the programmer 

to map tasks onto the memory 

hierarchy.

Tasks are parameterized using  

tunable variables that are 

specified in a special mapping 

file at compile-time.  This 

enables tasks to be portable 

across different architectures.

Figure 3. Example matrix multiplication in Sequoia
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Figure 4. A comparison between the Sequoia and CUDA programming models

In order for the Sequoia compiler to be able to target GPUs, we have to be able to map 

the Sequoia programming model onto the CUDA programming model.  This requires 

that all the features of the Sequoia language can be expressed  in CUDA.  Figure 4 

gives a simple illustration of some of the important differences between Sequoia and 

CUDA.

When targeting Sequoia to CUDA, we ignore the CUDA abstract machine model and 

instead allow Sequoia to leverage its knowledge of the program to target the device 

directly.  We therefore only launch as many cooperative thread arrays (CTAs) as there 

are streaming multiprocessors (SMs) on the device.  The Sequoia compiler is then 

able to map tasks directly onto the SMs rather than simply launching CTAs and 

trusting the hardware to schedule them efficiently.
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Figure 5. An example of one form of copy-elimination performed by Sequoia

One advantage of the Sequoia programming model is task working sets are explicit.  

By coupling this information with the compiler’s knowledge of where tasks are 

scheduled to be run in the memory hierarchy, the compiler is able to create an 

intermediate representation rich enough to perform copy elimination.  Since Sequoia 

deals with bulk transfers of data rather than individual variables, every eliminated 

copy results in significant performance gains.

In the context of CUDA, this is most noticeable when dealing with copies between 

host and device memories.  Sequoia is able to reason about reuse of data across 

kernel calls and thereby avoiding moving data unnecessarily between the host and 

device.  There are several different copy elimination patterns that the Sequoia 

compiler is capable of recognizing, one of which is illustrated in Figure 5.
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Figure 6. Sequoia representation of a multi-GPU system

A major challenge with CUDA currently is programming multi-GPU systems.  

Sequoia is easily able to handle multiple GPU systems since its runtimes 

easily compose.  Using a CMP runtime Sequoia is able to launch multiple 

threads on the CPU (one for managing each GPU).  The CMP runtime easily 

composes with the GPU runtime enabling Sequoia programs to run on 

systems with multiple GPUs.  Sequoia can even place a cluster runtime on 

top of the CMP runtime to make it possible to target large MPI clusters with 

multiple GPU accelerators per node.

The Sequoia programming model makes it easy to write portable 

programs that can be mapped to GPUs.  Sequoia enables optimizations 

that minimize the overhead of writing efficient GPU code.  In addition, 

Sequoia gives the programmer the power to target multi-GPU machines.

No performance results are presented here as we are hoping to publish 

them in an upcoming paper.  In addition to this there are several 

additional optimizations that we hope to complete before demonstrating 

Sequoia’s performance on GPU accelerated machines.

Our planned future optimizations include:

• Software Pipelining – the ability to overlap communication with 

computation is an important scheduling optimization for the Sequoia 

compiler.  We plan to implement this feature at two granularities: for 

kernels running on the device as well as for tasks running within CTAs.

• Memory Coalescing – we plan on using the compiler’s knowledge of the 

program to optimize data layout in order to exploit the GPU’s ability to do 

memory coalescing operations.  This is even more important in the 

context of ECC which adds significant overhead to memory writes for 

supercomputing applications.

• Irregular parallelism – support for irregular parallelism will become an 

important feature as a wider variety of applications are beginning to be 

ported to GPUs 


