Contribution

Implementation on GPU **Computation Bottleneck**: The CG algorithm is heavily relies on the Mat-Vec. Information shared from consecutive right hand sides can be uti-• **Optimization One**: To reduce the number of Mat-Vec's. **Optimization Two**: To take advantage of the better performance of BLAS 3 over both BLAS 1 and 2. We notice that BLAS 3 outperforms BLAS 1 and 2, which is utilized **Optimization One - Projected CG (PrCG)** Idea: Galerkin projection can be used to project the current system to the previous generated solution space in CG algorithm [1]. Input: TOL, i = 0, RelRes = 1, k **Output:** $\mathbf{x}_q^{(k)}$ 1: **if** It is the seed system **then** 2: Canonical CG(); Because of the ill-posedness of the reconstruction matrix, regular-3: **else** $\mathbf{r}_q^{(i)} = \mathbf{b}_q^{(i)} - A\mathbf{x}_q^{(i)}$ for i = 1 to k do $\alpha_q^{(i)} = \frac{\langle \mathbf{p}_1^{(i)}, \, \mathbf{r}_q^{(i)} \rangle}{\langle \mathbf{p}_1^{(i)}, \, \mathbf{r}_q^{(i)} \rangle}$ (2) $< \mathbf{p}_{1}^{(i)}, A \mathbf{p}_{1}^{(i)} >$ $\mathbf{x}_q^{(i)} = \mathbf{x}_q^{(i)} + \alpha_q^{(i)} \mathbf{p}_1^{(i)}$ $\mathbf{r}_q^{(i+1)} = \mathbf{r}_q^{(i)} - \alpha_q^{(i)} A \mathbf{p}_1^{(i)}$ (3)end for RelRes = $\|\mathbf{r}_{q}^{(i)}\|_{2} / \|\mathbf{b}_{q}\|_{2}$ The conjugate gradient (CG) solvers is a standard solver used for 11: **end if** 12: Restart if further refinement needed **Optimization Two - Augmented PrCG (APrCG)** Idea: A further speedup can be reached if a mathematically equivalent algorithm can be expressed in terms of BLAS 3 operations All the kernels will be set up to be the same FLOP count of $2n^3$. other than BLAS 1 or 2 operations. 01 Utilizing the orthogonality relationships that (detailed derivation is omitted because of the page limitation), and a second 10 $<\mathbf{p}_{1}^{(j)}, A\mathbf{p}_{1}^{(i)}>=0, j\neq i,$ ອັ 10¹ and $<\mathbf{p}_{1}^{(j)}, \ \mathbf{r}_{q}^{(i)}>=0, \ j < i,$ sdolf 10° we proposed a Augmented Projected CG (APrCG) algorithm mathematically equivalent to the (PrCG). Input: TOL, i = 0, RelRes = 1, k Mat–Mat 10 **Output:** $\mathbf{x}_q^{(k)}$ - • Mat-Vec - * - Dot Product 1: $\mathbf{r}_{q}^{(i)} = \mathbf{b}_{q} - A\mathbf{x}_{q}^{(i)}$ • • SAXPY 2: $\alpha = \langle P, \mathbf{b}_q \rangle$./diagVec($\langle P, AP \rangle$) 10 3: $\Lambda = \operatorname{diag}(\boldsymbol{\alpha})$ 800 200 400 600 MFlops 4: $\mathbf{x}_q = \mathbf{x}_q^{(0)} + \operatorname{sum}(P \cdot \Lambda)$ **Conclusion:** It is interesting to see that **BLAS 3 kernels definitely** 5: $\mathbf{r}_q = \mathbf{r}_q^{(0)} - \operatorname{sum}(AP \cdot \Lambda)$

$$A\mathbf{x} = B = [\mathbf{b}^{(1)}, \dots \mathbf{b}^{(s)}],$$

$$\underset{\mathbf{x}}{\operatorname{arg\,min}} \left\{ \frac{1}{2} \|A\mathbf{x} - B\|_{2}^{2} + \frac{\lambda}{2} \|L\mathbf{x}\|_{2}^{2} \right\}.$$

$$(A^T A + \lambda^2 L^T L)\mathbf{x} = A^T B.$$

• A linear system with multiple right hand sides is proposed to model the 3-D image reconstruction application. lized to reduce the number of matrix vector multiplication (Mat-Vec) on GPU. to further optimize the reconstruction algorithm. **Problem Description and Modeling** • A 3-D image reconstruction can be modeled as where *A* is the reconstruction matrix, **b** is the measurement gathered from the medical device. ization (Tikhonov) needs to be utilized: This is equivalent to solving a linear systems: solving the linear system (3). **BLAS Performance on GPU** • The performance of the GPU (Nvidia Tesla C1060/CUDA+Cublas) in **FLOPS** is compared for the BLAS 1, 2 and 3 kernels.

outperform both BLAS 1 or BLAS 2 kernels in terms of FLOPS. 6: RelRes = $\|\mathbf{r}_q\|_2 / \|\mathbf{b}_q\|_2$

Projected Conjugate Gradient Solvers on GPU and Its ApplicationsYouzuo Linyouzuo.lin@asu.edu,Rosemary Renautrenaut@asu.edu,Arizona State University

(4)

(5)

Slice	CG		PrCG		APrCG		Speedup	ImpRatio
	Cost	SNR	Cost	SNR	Cost	SNR	Speedup	Πηριλατιο
65	17.41	13.67	2.16	13.67	2.06	13.67	8.45	4.63%
66	16.34	13.80	2.74	13.83	2.58	13.83	6.33	5.84%
67	14.35	13.91	3.11	13.95	2.81	13.95	5.11	5.84%
68	13.03	13.80	3.53	13.83	3.46	13.83	3.77	5.84%

Table: Reconstruction of Four Consecutive Slices from 65 to 68 on the GPU (Nvidia Tesla C1060). The 64^{th} slice is selected as seed. Speedup is the speedup ratio of APrCG over CG, ImpRatio is the improvement ratio of **APrCG** over **PrCG**.

Figure: Reconstruction Results on CPU and GPU, slice index = 66. Left: CPU/CG; Middle: GPU/PrCG; Right: GPU/APrCG.

Reference

[1] T. F. Chan, W. L. Wan. Analysis of projection methods for solving linear systems with multiple right-hand sides In SIAM: SISC, 1997.

& STATISTICAL SCIENCES

Results - 3D Image Reconstruction

A 3D Shepp-Logan Phantom $128 \times 128 \times 128$ is utilized for testing, system matrix size: 16650×16384 , condition number 1.1×10^{32} .

Figure: Slice Show of A 3D Shepp-Logan Phantom

