
Projected Conjugate Gradient Solvers on GPU and Its Applications
Youzuo Lin youzuo.lin@asu.edu, Rosemary Renaut renaut@asu.edu, Arizona State University

Contribution
• A linear system with multiple right hand sides is proposed to
model the 3-D image reconstruction application.
• Information shared from consecutive right hand sides can be uti-
lized to reduce the number of matrix vector multiplication (Mat-Vec)
on GPU.
• We notice that BLAS 3 outperforms BLAS 1 and 2, which is utilized
to further optimize the reconstruction algorithm.

Problem Description and Modeling
• A 3-D image reconstruction can be modeled as

Ax = B = [b(1), . . .b(s)], (1)

where A is the reconstruction matrix, b is the measurement gathered
from the medical device.
• Because of the ill-posedness of the reconstruction matrix, regular-
ization (Tikhonov) needs to be utilized:

arg min
x

{
1
2
‖Ax−B‖22 +

λ

2
‖Lx‖22

}
. (2)

This is equivalent to solving a linear systems:

(ATA+ λ2LTL)x = ATB. (3)

• The conjugate gradient (CG) solvers is a standard solver used for
solving the linear system (3).

BLAS Performance on GPU
• The performance of the GPU (Nvidia Tesla C1060/CUDA+Cublas)
in FLOPS is compared for the BLAS 1, 2 and 3 kernels.
• All the kernels will be set up to be the same FLOP count of 2n3.

• Conclusion: It is interesting to see that BLAS 3 kernels definitely
outperform both BLAS 1 or BLAS 2 kernels in terms of FLOPS.

Implementation on GPU
• Computation Bottleneck: The CG algorithm is heavily relies on
the Mat-Vec.
• Optimization One: To reduce the number of Mat-Vec’s.
• Optimization Two: To take advantage of the better performance
of BLAS 3 over both BLAS 1 and 2.

Optimization One - Projected CG (PrCG)
• Idea: Galerkin projection can be used to project the current system
to the previous generated solution space in CG algorithm [1].

Input: TOL, i = 0, RelRes = 1, k
Output: x(k)

q

1: if It is the seed system then
2: Canonical CG();
3: else
4: r(i)

q = b(i)
q −Ax(i)

q

5: for i = 1 to k do

6: α
(i)
q =

< p(i)
1 , r(i)

q >

< p(i)
1 , Ap(i)

1 >

7: x(i)
q = x(i)

q + α
(i)
q p(i)

1

8: r(i+1)
q = r(i)

q − α(i)
q Ap(i)

1

9: end for
10: RelRes = ‖r(i)

q ‖2/‖bq‖2
11: end if
12: Restart if further refinement needed

Optimization Two - Augmented PrCG (APrCG)
• Idea: A further speedup can be reached if a mathematically
equivalent algorithm can be expressed in terms of BLAS 3 operations
other than BLAS 1 or 2 operations.

Utilizing the orthogonality relationships that (detailed derivation is
omitted because of the page limitation),

< p(j)
1 , Ap(i)

1 >= 0, j 6= i, (4)

and
< p(j)

1 , r(i)
q >= 0, j < i, (5)

we proposed a Augmented Projected CG (APrCG) algorithm mathe-
matically equivalent to the (PrCG).

Input: TOL, i = 0, RelRes = 1, k
Output: x(k)

q

1: r(i)
q = bq −Ax(i)

q

2: α =< P, bq > ./diagVec(< P, AP >)
3: Λ = diag(α)
4: xq = x(0)

q + sum(P · Λ)
5: rq = r(0)

q − sum(AP · Λ)
6: RelRes = ‖rq‖2/‖bq‖2

Results - 3D Image Reconstruction
• A 3D Shepp-Logan Phantom 128× 128× 128 is utilized for testing,
system matrix size: 16650× 16384, condition number 1.1× 1032.

Figure: Slice Show of A 3D Shepp-Logan Phantom

Slice CG PrCG APrCG Speedup ImpRatioCost SNR Cost SNR Cost SNR
65 17.41 13.67 2.16 13.67 2.06 13.67 8.45 4.63%
66 16.34 13.80 2.74 13.83 2.58 13.83 6.33 5.84%
67 14.35 13.91 3.11 13.95 2.81 13.95 5.11 5.84%
68 13.03 13.80 3.53 13.83 3.46 13.83 3.77 5.84%

Table: Reconstruction of Four Consecutive Slices from 65 to 68
on the GPU (Nvidia Tesla C1060). The 64th slice is selected as seed.
Speedup is the speedup ratio of APrCG over CG, ImpRatio is the
improvement ratio of APrCG over PrCG.

Figure: Reconstruction Results on CPU and GPU, slice index =
66. Left: CPU/CG; Middle: GPU/PrCG; Right: GPU/APrCG.

Reference
[1] T. F. Chan, W. L. Wan. Analysis of projection methods for solving linear systems with

multiple right-hand sides In SIAM: SISC, 1997.

1


