
Histogram 

matching

CUDA Acceleration of Color Histogram Matching
Antonio S. Montemayor, Raúl Cabido, Juan José Pantrigo

Universidad Rey Juan Carlos, SPAIN
Xavi Rodríguez, Sergi Sàgas

Mediapro Research, SPAIN

Reference Image (A)

Luminance modified (B) Error (x5)

Error (x5)Result Image (B2)

ROLLAND, J. P., VO, V., BLOSS, B., AND ABBEY, C. 2000. Fast algorithms for histogram matching: Application to texture synthesis. Journal of 

Electronic Imaging 9(1).

A common approach to histogram matching is done by means of  the cumulative distribution functions (CDFs). 

First, we calculate their normalized histograms (hA and hB) and their respective cumulative histogram distribution functions 

(CDFA and CDFB). Then, a matching between the CDFs are performed. Given the reference CDF, CDFA, for each gray 

level GI we find the corresponding gray level GJ in which CDFA(GI) = CDFB(GJ), if I and J correspond to different values 

then a replacement of a gray level in the image IB is performed in order to match their CDFs. Our approach considers the 

ideas of [Rolland et al. 2000] with a Nvidia 3D broadcast solution system using professional HD cameras. 

CDFA

CDFB

CDFA

CDFB

2
Performance 1440x1080

1920x1080 

(HD)
3648x2736

CPU
(Intel Core2 Duo 

3GHz)

33 ms 49 ms 207 ms

GPU
(GeForce GTX260)

19 ms 29 ms 104 ms

GPU
(GeForce GTX480)

8.9 ms 9.5 ms 52 ms

HistogramB

HistogramA

Atomic operations 

for 1 color channel 

histogram

Medium computational cost

Each original 

color in B(x,y) is 

changed 

according to the 

previous LUT, 

creating B2(x,y)

CDFs are monotonically nondecreasing

functions. Each thread in CDFA evaluates CDFB

until CDFA(GI) = CDFB(GJ), creating a LUT with 

new color values in 0-255 color indices.

CUDPP cudppMultiScan function in reordered 

layout BBB..GGG…RRR (3 chunks) instead of usual 

interlaced layout BGR-BGR-BGR computes the CDFs

Image histograms are not very prone to parallelization because of

the implicit direct access to the distribution container which can

lead to race conditions. However, with the recent advances of the

CUDA platform we can exploit the atomic operations in CUDA

shared memory supported by compute capability 1.2 devices.

Low computational cost

High computational cost

in CUDA shared memory  7.1ms 

(1440x1080, GTX260)

Each color channel histogram 

(256 values) packed in 1 CUDA 

block  256 threads/block (<512)

in CUDA global memory  143ms 

(1440x1080, GTX260)

CONCLUSION
Histogram techniques are not very parallel friendly, 

however we found very useful the 1.2 compute 

capability feature of atomic operations on CUDA 

shared memory to improve about x20 the performance 

of histogram computation on GPU (compared to global 

memory usage). Overall, for the histogram matching 

problem, we get about x5.2 performance 

improvement compared to CPU execution enabling 

real time (>30 fps) processing on HD imagery

(1920x1080) for possible 3D content creation and 

accurate depth estimation.

CUDA threads

atomicAdd operations


