
CUDA Creatures
Andrew Hershberger
Vadim Ogievetsky
July 17th, 2010 

m1

w1

m2

w2

mn

wn

Random 
[0,1]

wr

Constant 
1

wc

Sameness
[-1,1]

ws

In 1981, Axelrod and Hamilton 
examined the iterated Prisoner's 
Dilemma. It was shown by computer 
simulation that the best strategy was 
one known as TIT FOR TAT, in which a 
creature cooperates in its first encounter 
with another creature and on every 
subsequent turn plays the same move 
as its opponent.

Such computer simulations quickly 
become impractical due to the round-
robbin (number of creatures squared) 
nature of the simulation. However, 
increased performance, and therefore 
increased ability to explore variants of 
the problem, is possible by taking 
advantage of the single instruction, 
multiple data (SIMD) parallelism of the 
interactions between agents.

CUDA Creatures is a high-performance 
platform for exploring the space of 
strategies available to creatures 
engaged in variants of the iterated 
Prisoner's Dilemma.

Motivation

References
Axelrod, Robert; Hamilton, William D. 
(27 March 1981), "The Evolution of 
Cooperation", Science 211: 1390–96, 
doi:10.1126/science.7466396

880x Speedup
CUDA Creatures has achieved a massive speedup by 
exploiting the data parallelism of the problem. In one case it 
achieved an 880x speedup and regularly delivered speedups 
in the range of 600x to 700x over the CPU implementation.

Baseline (naïve) 100x

Replacing atomic add with reduction 2x

Smart bit vector packing and heavy use of shared 
memory

3x

Simulation Design 
Each creature is encoded as a vector of weights that parameterize 
the calculation of a simple neural network, the result of which 
determines the creature's behavior. As shown below, the inputs to 
the neural network are a finite memory of the creature's interactions 
with its opponent and several other optional inputs to allow 
variations on the information available to the creature as it makes its 
decision.

CUDA Creatures uses a genetic algorithm to evolve the creatures 
by allowing mutated versions of the fittest creatures to replace the 
sickliest.

On the CPU each creature-creature interaction must be 
performed sequentially, but on the GPU, many interactions 
can be calculated in parallel. In an initial naïve implementation, 
CUDA Creatures used the same implementation on the host 
and device by using atomics and many accesses to global 
memory. Even in this impoverished implementation the 
speedup was significant due to the parallel execution.

In a second iteration on the design of the CUDA kernel, atomic 
operations were eliminated by storing intermediate per-thread 
results and then using a reduction.

One final optimization was to pack the interaction history for 
each pair of creatures into a single register, allowing the 
shared memory to be used to cache the creature weights – 
eliminating the bulk of the global memory accesses.

Parallel Strategy

Experimental Results

http://code.google.com/p/cuda-creatures/

In accordance with Axelrod's findings, our simulation reviled that 
TIT FOR TAT and similar strategies produced the best results. In 
particular the fittest creature has to be “nice” (i.e. it cooperates on 
the first round).


	Page 1

