
GPU-accelerated Texture Decompression of Biomedical Image Stacks
Chirantan Ekbote

1,2
, Won-Ki Jeong

1
, Jens Schneider

3
, Hanspeter Pfister

1

1
School of Engineering and Applied Sciences, Harvard University

2
Department of Computer Science and Engineering, The Ohio State University

3
Geometric Modeling and Scientific Visualization Research Center, King Abdullah University of Science and Technology (KAUST)

Compression

References

Introduction

Conclusion

Background: Histopathology is the microscopic examination of tissue in order
to study the manifestations of disease. High resolutions images are vital for
accurate diagnoses and a major obstacle to the use of digital imaging in
histopathology has been the inability to display these large images at
interactive rates.

Purpose: Create a tool for interactive visualization of biomedical image stacks
using GPU-accelerated on-the-fly texture decompression [1]. The image stacks
are compressed using a novel approach custom tailored for the data we are
dealing with, i.e. data exhibiting exceptionally high coherence between the
slices of each image stack.

Decompression

Figure 2: Stack of optical microscope
images. Each image is taken with a
different focal length

Figure 1: Conventional optical microscope
on which a pathologist views glass slides
moved by hand.

To be completed

Results

OpenGL vs. CUDA / GTX 285 vs. GTX 480:
• Decoding time for a single slice using OpenGL was same on the GTX 285 and
480, although CUDA performance was much worse on the 285.
• Using shared memory provided a 10% increase in speed over using global
memory on the GTX 285.
• Decoding a single slice on the GTX 480 was 24% faster using CUDA than
using OpenGL, mainly due to the efficient memory management and the L1/L2
hardware cache. A side effect of having the cache was that using shared
memory provided no significant advantage over using global memory.

Kernel Block Dimensions:
• Decoding times were recorded for varying thread block dimensions of each
kernel call from 4x4 threads per block to 32x32 threads per block.
• Empirically, we found that using a block size of 16x16 threads per block was
ideal for our implementation.

Summary: We have created a tool for pathologists to visualize large high-
resolution optical microscopy image stacks at interactive rates. This is
accomplished by a novel variation on predictive hierarchical vector quantization
that can be fully decoded on the GPU.

Future Work: Test and implement the compression algorithm and decoder for
electron microscopy data to incorporate it into a framework for semi-automatic
segmentation and visualization of neural processes.

[1] Won-Ki Jeong, Jens Schneider, Stephen G. Turney, Beverly E. Faulkner-Jones, Dominik
Meyer, Rüdiger Westermann, Clay Reid, Jeff Lichtman, Hanspeter Pfister, Interactive
Histology of Large-Scale Biomedical Image Stacks, IEEE Transactions on Visualization and
Computer Graphics, 2010 (to appear).

4 8 16 32

4 1.24 0.95 0.77 0.69

8 0.95 0.7 0.6 0.61

16 0.77 0.6 0.58 0.6

32 0.69 0.61 0.6 0.7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
im

e
 (

m
s
)

Decoding Time By CUDA Thread Block Size

The compression algorithm we employed is the Lloyd’s method, which
reduces the data size by encoding a cluster of similar pixels to a single
element in the codebook.

The stack compression relies on the fact that every image is very similar to
the images above and below it and is accomplished by:

1. Jointly encoding only the top and bottom images of the stack.

2. Using linear interpolation to predict the intermediate slices and only
encoding the differences between the actual and predicted values.

3. Ensuring the number of bits used to store the differences is less than the
number of bits that would be necessary to store the image itself.

Figure 3: Storage layout of the compressed data. Only the top and bottom slices are
encoded while linear interpolation is used to predict and delta-code the intermediate
slices.

Figure 4: Overview of the stages of decompression (left) and GPU time for each
decompression stage (right).

Reconstruction of the images is then
accomplished by simply reversing the
encoding process:

1. Fetch the 2x2 pixels for the top and
bottom images and linearly interpolate
the values to get the desired slice.

2. Expand the image to 32x32 pixels.

3. Fetch and incorporate the encoded
differences into the predicted image.

4. Repeat step 3 once by expanding the
image to 128x128 pixels and once
more by expanding to 512x512 pixels.

Output Image

Decode

Expand

0 5 10 15 20 25 30 35 40 45 50

Output Image Decode Expand

GPU Time (%) 15.1 38.4 46.5

GPU Time (%) Per Process

2 x 2

32 x 32

128 x 128

512 x 512

CPU vs. GPU: Decoding a single slice on the GPU was more than 36x
faster than on an 8-core CPU. This is because the highly parallel
architecture of the GPU enables decoding of blocks of pixels together,
significantly reducing computation time.

Expand

Expand

Expand
OpenGL CUDA without Shared Memory CUDA with Shared Memory

GTX 285 0.77 2 1.8

GTX 480 0.77 0.6 0.58

0

0.5

1

1.5

2

2.5

Ti
m

e
 (

m
s)

Optimization

Single Core CPU 8-Core CPU GPU

Decoding Time 162.93 21.16 0.58

0

20

40

60

80

100

120

140

160

180

Ti
m

e
 (

m
s)

Decoding Time

2 x 2 x N 32 x 32 x N 128 x 128 x N 512 x 512 x N 512 x 512 x N

