
Highly Parallel Image Reconstruction for Positron
Emission Tomography (PET)

Jingyu Cui1 Guillem Pratx2 Sven Prevrhal5 Lingxiong Shao5 Craig S. Levin1,3,4

1Department of Electrical Engineering, 2Radiation Oncology, 3Departments of
Radiology, 4MIPS, Stanford University, CA, 5Philips Healthcare, CA.

Introduction

Positron Emission Tomography (PET) is a nuclear medicine imaging technique
which produces a 3D image of functional processes in the body. Unlike X-ray
CT, which mainly reveals anatomical detail, PET imaging can detect
biological activities at the molecular level, for instance heightened sugar
metabolism in cancerous tissue. PET is used extensively to measure blood flow
or glucose metabolic activity in brain and heart of human and animals.

Typical steps in PET imaging include:

◮ Patient is injected with a tracer
substance tagged by positron
emitting radioactive atoms;

◮ Positron annihilates with
electron, generating two photons
leaving the event location in
random but opposite directions;

◮ A ring of detectors detect photon
pairs in coincidence;

◮ A few hundred millions of line
pairs pin down the volumetric
distribution of the tracer.

Fig. 1: Typical PET System.

Image Reconstruction

The list-mode Ordered Subset Expectation Maximization (OSEM) iterative
algorithm involves a series of forward and back- projection operations for each
voxel-line pair, and computes the tomographic image that has maximal
likelihood given the measurements.

Workload Distribution

We implemented the traversal of the projective line through image space on a
slice-by-slice basis. Line-slice interactions are handled by parallel threads. To
avoid data race, we try to partition the computation according to the output,
so that the threads are independent in term of write collision, yet they can
collaborate in reading data since they share the input.
This is easy for forward projection, where only one thread writes to a line.
However, it’s hard for backprojeciton since line-slice interactions are sparse.

Typical problem size:

◮ 100 million lines

◮ 10 million voxels

◮ Iterate for 20 times

Design considerations:

◮ Keep all cores busy;

◮ Ensure thread coherency;

◮ Hide memory latency by
using concurrent threads;

◮ Make use of locality to
minimize bandwidth
usage.

Fig. 2: Demonstration of the workload distribution.

Implementation and Results

Forward projection: Lines are partitioned into
groups, each assigned to a thread block. Each
thread in the thread block processes a line
independently.
Backprojection: Sparsity is not exploited if
job is partitioned by voxels. Instead, the same
partition scheme as the forward projection was
used with atomic operations to ensure
correctness.

Fig. 3: Retries in spin-lock
atomics. Blue: 0 retry; Green: 1
retry; Red: 2 retries.

Optimization techniques used:

◮ Loop unrolling. Trade off between unrolling and register usage.

◮ Fast math.

◮ Linear texture interpolation.

Fig. 4: A hot rod phantom reconstructed on the
GPU with 5 subsets and 20 iterations. Rods
sizes are 1.2, 1.6, 2.4, 3.2, 4.0, and 4.8 mm.

Fig. 5: The same phantom in Fig. 4
reconstructed on the CPU with the same
parameters.

Fig. 6: Number of lines processed per second v.s. varying thread blocks.

Fig. 7: Execution time for processing varying numbers of lines.

120x speedup compared with optimized CPU implementation.

Discussion

Future Optimizations:

◮ Better culling to skip non-intersecting slices and lines;

◮ More accurate physics modeling.

This work was supported in part by a grant from Philips Healthcare and NIH grants R01 CA110956, ARRA R01CA119056-04S1, and R01 CA120474.


