
Jeff Stuart and John D. Owens

University of California, Davis

GPU-to-CPU Callbacks

Callbacks not only mitigate the problems

mentioned in the motivation and background, but

they’re also very easy to use. Below is a small

code fragment demonstrating callbacks. This

particular example has the GPU read file data

directly via callbacks. The master thread executes

the callback, the CPU picks up the request,

executes the user-defined read function, and then

returns control to the GPU. Once the GPU detects

the callback is complete, it begins its

computations.

On CPU
callbackHandle_t readFileHandle;

createCallback(&readFileHandle, readFileFunction, CB_TYPE_INT,

numberOfParameters, parameterTypesArray);

callbackData_t * gpuCallbackData = callbackGetGPUData();

kernel<<<gridSize, blockSize, 0, stream>>>(gpuCallbackData,

readFileHandle,

gpuMemory,

elementsToProcess);

callbackSynchronize(stream);

On GPU
__global__ kernel(callbackData_t * cbd, callbackHandle_t cbh,

int * gpuMem, int elementCount)

{

if (threadIdx.x + blockIdx.x == 0)

{

callbackAsyncRequest_t req;

req = callbackExecuteAsync<int>(cbd, cbh, gpuMem, elementCount);

}

while (!*ready)

{

if (threadIdx.x == 0 && blockIdx.x == 0)

{

if (callbackAsyncPoll(req) == CALLBACK_FINISHED)

{

*(volatile int *)ready = ready;

__threadfence();

}

}

doSomeProcessing();

}

doSomeMoreProcessingThatDependsOnGPUMem();

}

The Look of Callbacks
System-on-a-Chip Architecture

Microprocessor architectures are becoming ever-

more complex. Even now, the trend is towards

System-on-a-Chip [1], wherein many components

of a standard computer (e.g. CPU, GPU, NIC) are

integrated onto a single die. However, the CPU

remains as the sole controller of the machine as a

whole.

Intuitive Workflow

The GPU has a very specific method of

programming. Users create kernels, CPU code

launches those kernels. But sometimes, code

would be more intuitive to write if the GPU had

(pseudo-)access to system calls e.g. file I/O.

Debugging

Debugging is a hard problem on the GPU. Hou et

al. [2] used a visual method for debugging, while

NVIDIA Corp. [3] produced a GDB interface to the

GPU. However, neither of these completely satisfy

people in need of familiar debugging techniques.

Previous Work

DCGN [4] used asynchronous memory copies to

allow the GPU to request work from the CPU.

However, the work to be requested was hard

coded, and the request method was error prone.

1. Next Generation NVIDIA Tegra: http://www.nvidia.com/object/tegra_250.html

2. Hou, Q., Zhou, K., Guo, B.: Debugging GPU stream programs through automatic

dataflow recording and visualization. ACM Transactions on Graphics 28(5), 153:1–

153:11 (Dec 2009)

3. NVIDIA Corporation: CUDA-GDB: The NVIDIA CUDA debugger (2008),

http://developer.download.nvidia.com/compute/cuda/2 1/cudagdb/

CUDA GDB User Manual.pdf

4. Stuart, J.A., Owens, J.D.: Message passing on data-parallel architectures. In: Proceedings

of the 23rd IEEE International Parallel and Distributed Processing Symposium

(May 2009), http://graphics.cs.ucdavis.edu/publications/print pub?

pub id=959

Motivation & Background
A callback is a mean for a GPU to explicitly

request work from a CPU. This is analogous to a

CUDA-kernel invocation.

We implemented callbacks using pools of 0-copy

memory and polling. When a GPU thread issues a

callback, it copies function parameters into 0-copy

memory and then sets a flag, also in 0-copy

memory. The CPU, meanwhile, is polling the

same area of 0-copy memory. When it notices a

callback, it executes the appropriate CPU function

and unsets the flag on the GPU, thus returning

control to the GPU thread. A diagram of this

behavior is shown below. Note that we assume

when GPU vendors expose signals/interrupts to

developers, we will be able to implement a sleep-

based mechanism for handling callbacks.

Callbacks in a Nutshell

The following diagram shows how the CPU and

GPU behave when the GPU issues a callback.

Note the overhead due to polling. We hope this

will be one more reason for GPU vendors to

expose interrupt/signal capabilities to developers.

Diagram of a Callback

Michael Cox

NVIDIA Corp.

http://www.nvidia.com/object/tegra_250.html

