

Acceleration of Asymptotic Computational Electromagnetics Physical

Optics - Shooting and Bouncing Ray (PO-SBR) using CUDA™
Huan-Ting Meng(1), Jianming Jin(1), and Eric Dunn(2)

(1) CCEML, Dept. of ECE, University of Illinois at Urbana-Champaign

 (2) Science Applications International Corporation

 Many defense and commercial communication system applications rely on electromagnetic simulations for

signal exploitation and mission planning. For instance, when deploying a communication system it is important to

predict the coverage that the system will provide. Such prediction often takes the form of field profiles, which are

color plots indicating the simulated field strength from a transmitter over a geographic area.

 Despite their importance, field profiles can be difficult to generate. Physical measurements take time and often

are impossible if access to the area is restricted. For numerical simulation based on computer models, even the

fastest algorithms often take significant time to carry out the computation. This is because field values must be found

not only for a large number of observation points, but also for multiple frequencies.

 With the right choice of simulation algorithm, the field value at each observation point/frequency pair can be

computed independently of all other observation point/frequency pairs, allowing parallel processing to be applied.

One such algorithm is what is known as the Physical Optics – Shooting and Bouncing Ray (PO-SBR) algorithm.

This algorithm involves two separate processes which themselves can be further accelerated with parallel

processing:

1. SBR:

• CAD models are used to represent the environment in which the fields will be measured.

• Rays are launched spherically from each transmitter and traced as they bounce off and hit new CAD

surfaces.

2. PO:

• Intersection points where rays have bounced off surfaces get replaced with an equivalent current.

• Equivalent currents then are radiated to each field observation point as a function of the signal frequency.

 To apply parallel processing to this problem, a Quadro® FX 5800 device was provided by NVIDIA® . Two

different versions are implemented, one using CUDA™ with a standard CPU ray tracer that takes advantage of the

GPU shared memory, and another that uses only the GPU global memory but with NVIDIA®’s OptiX™ package for

its ray tracer. Both versions were able to use this GPU’s 240 cores (4GB global memory, 30 multiprocessors) to

simulate field profiles over 150x faster than with a standard CPU.

Introduction CUDA™ Implementation Results

2. Radiation from source to all Nhit ray hit points

 The incident field from the source needs to be computed at every initial ray

hit point, and then its phase updated for all subsequent ray bounces in order

to find the surface currents.

• A 2D grid of blocks is allocated (2D is to avoid grid dimensional limit).

• Each block in the grid computes the incident field at L ray hit points for

all Nfreq frequencies.

• The exact number of ray hit points per block is based on the amount of

shared memory available per block.

• For a single frequency simulation this is around 110 hits per block.

More frequencies require more memory and therefore allow fewer ray

hits per block.

• Each thread within the block (maximum of 512) computes the incident

field for one combination of frequency and hit point.

• The field values for all frequencies and all hit points are stored in device

global memory to be used by the next step.

4. Radiation from source to all Nobs observation points

 The incident field from the source needs to be computed at every

observation point in order to determine the total field.

• A 2D grid of blocks is allocated (2D is to avoid grid dimensional limit).

• Each block in the grid computes the incident field at M observation

points for all Nfreq frequencies.

• The exact number of observation points per block is based on the

amount of shared memory available per block.

• For a single frequency simulation this is around 290 observation points

per block. More frequencies require more memory and therefore allow

fewer observation points per block.

• Each thread within the block (maximum of 512) computes the induced

current and incident field for one combination of frequency and

observation point.

• The field values for all frequencies and all observation points are added

to the scattered field values in device global memory before transferring

the result back to the host machine for visualization.

 Both versions of the CUDA™ implementation of the PO-

SBR algorithm applied in this study gave roughly the same

performance. When analyzing a multiple source simulation

the GPU has reached speeds over 150x faster than the CPU

alone (see HPEC 2010 presentation). After running the code

and returning all field values to the host machine, MATLAB®

was used to load and plot the results. Shown below are

examples where the magnitude of the electric field (in dB) is

plotted at different resolutions corresponding to a single

Hertzian dipole antenna source radiating at a single frequency

of 2 GHz. The simulation time and speed-up factors listed are

for the radiation calculations, not including the ray tracing time

which was not a significant part of the total run time for these

cases. It can be seen that the speed-up over CPU is not very

noticeable for small amounts of observation points because

the GPU is not being fully utilized. But for large amounts of

observation points here it grows to a factor of 50x.

PO-SBR Theory

Surface current

patch induced by ray

Incident field

radiated by source

Scattered field radiated

by surface current

Source Point

Observation Point

Ray generated

by source

CAD Surface

Ray reflected

off surface

 The total field at each observation point is equal to the incident field plus

the scattered field. This process of bouncing rays, inducing surface

currents, and radiating fields is repeated for all frequencies, all rays, and all

observation points.

1. Tracing of rays

 Millions of rays are launched from the source and are allowed to bounce around the scene which can be described

by millions of triangular CAD facets.

• Version 1: Implemented on CPU with modified version of PBRT code (www.pbrt.org). Traces all rays to

completion and passes entire ray history (Nhit hit points, surface normals, and ray directions) to GPU. The rest of

the CUDA™ implementation shown here is for this version.

• Version 2: Implemented on GPU with NVIDIA® 's OptiX™ package (www.nvidia.com/object/optix.html). Traces a

subset of all rays and retains ray history in global memory of GPU. This version was presented at HPEC

workshop (www.ll.mit.edu/HPEC/2010).

* SAIC and the SAIC logo are registered trademarks of Science Applications International Corporation in the U.S. and other countries.

* NVIDIA, Quadro, CUDA, and OptiX are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries.

* MATLAB is a registered trademark of The MathWorks, Inc. in the U.S. and other countries.

Field Profile

• 100 Observation Points

• 10,000 Observation Points

• 2,500 Observation Points

• 250,000 Observation Points

1964 Thunderbird

3. Radiation from all Nhit ray hit points to all Nobs observation points

 The induced surface current from each hit point needs to be radiated to

every observation point in order to find the scattered field contributions.

• A 2D grid of blocks is allocated (2D is to avoid grid dimensional limit).

• Each block in the grid computes the scattered field at M observation

points for all Nfreq frequencies.

• The exact number of observation points per block is based on the

amount of shared memory available per block.

• For a single frequency simulation this is around 290 observation

points per block. More frequencies require more memory and

therefore allow fewer observation points per block.

• Each thread within the block (maximum of 512) computes the induced

current and scattered field for one combination of frequency and

observation point.

• This requires the host calling kernels sequentially for each hit point,

looping through each hit point to accumulate the field values at all

observation points in device global memory to be used by the next step.

Timing Comparison

Nobs CPU (sec) GPU (sec) Speedup

100 1.79 0.95 1.88

2,500 41.09 1.31 31.37

10,000 163.40 3.78 43.23

250,000 3,917.41 75.88 51.63

Source Point (-3,0,1)

Block (0,0)

Hits: 1 … L

Freqs: 1…Nfreq

Block (1,0)

Hits: L+1 … 2L

Freqs: 1…Nfreq

…

Block

Hits: Nhit-L … Nhit

Freqs: 1…Nfreq

Grid

Thread (0,0)

Hit Point (0)

Frequency (0)

Thread (1,0)

Hit Point (0)

Frequency (1)

Thread (Nfreq-1,0)

Hit Point (0)

Frequency (Nfreq-1)

Thread

 (Nfreq-1,L-1)

Hit Point (L-1)

Frequency (Nfreq-1)

Thread (0,1)

Hit Point (1)

Frequency (0)

Thread (1,1)

Hit Point (1)

Frequency (1)

Thread (0,L-1)

Hit Point (L-1)

Frequency (0)

Thread (1,L-1)

Hit Point (L-1)

Frequency (1)

…

…

… …

…

…

Thread (Nfreq-1,1)

Hit Point (1)

Frequency (Nfreq-1)

Block (0,0)

Block (0,0)

Obs: 1 … M

Freqs: 1…Nfreq

Block (1,0)

Obs: M+1 … 2M

Freqs: 1…Nfreq

Grid

Thread (0,0)

Obs Point (0)

Frequency (0)

Thread (1,0)

Obs Point (0)

Frequency (1)

Thread (Nfreq-1,0)

Obs Point (0)

Frequency (Nfreq-1)

Thread

 (Nfreq-1,M-1)

Obs Point (M-1)

Frequency (Nfreq-1)

Thread (0,1)

Obs Point (1)

Frequency (0)

Thread (1,1)

Obs Point (1)

Frequency (1)

Thread (0,M-1)

Obs Point (M-1)

Frequency (0)

Thread (1,M-1)

Obs Point (M-1)

Frequency (1)

…

…

… …

…

…

Thread (Nfreq-1,1)

Obs Point (1)

Frequency (Nfreq-1)

Block (0,0)

…

Block

Obs: Nobs-M … Nobs

Freqs: 1…Nfreq

Block (0,0)

Obs: 1 … M

Freqs: 1…Nfreq

Block (1,0)

Obs: M+1 … 2M

Freqs: 1…Nfreq

Grid

Thread (0,0)

Obs Point (0)

Frequency (0)

Thread (1,0)

Obs Point (0)

Frequency (1)

Thread (Nfreq-1,0)

Obs Point (0)

Frequency (Nfreq-1)

Thread

 (Nfreq-1,M-1)

Obs Point (M-1)

Frequency (Nfreq-1)

Thread (0,1)

Obs Point (1)

Frequency (0)

Thread (1,1)

Obs Point (1)

Frequency (1)

Thread (0,M-1)

Obs Point (M-1)

Frequency (0)

Thread (1,M-1)

Obs Point (M-1)

Frequency (1)

…

…

… …

…

…

Thread (Nfreq-1,1)

Obs Point (1)

Frequency (Nfreq-1)

Block (0,0)

…

Block

Obs: Nobs-M … Nobs

Freqs: 1…Nfreq

