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        Many defense and commercial communication system applications rely on electromagnetic simulations for 

signal exploitation and mission planning. For instance, when deploying a communication system it is important to 

predict the coverage that the system will provide. Such prediction often takes the form of field profiles, which are 

color plots indicating the simulated field strength from a transmitter over a geographic area.  

 

        Despite their importance, field profiles can be difficult to generate. Physical measurements take time and often 

are impossible if access to the area is restricted. For numerical simulation based on computer models, even the 

fastest algorithms often take significant time to carry out the computation. This is because field values must be found 

not only for a large number of observation points, but also for multiple frequencies.  

 

        With the right choice of simulation algorithm, the field value at each observation point/frequency pair can be 

computed independently of all other observation point/frequency pairs, allowing parallel processing to be applied. 

One such algorithm is what is known as the Physical Optics – Shooting and Bouncing Ray (PO-SBR) algorithm. 

This algorithm involves two separate processes which themselves can be further accelerated with parallel 

processing: 

 

1.  SBR:   

• CAD models are used to represent the environment in which the fields will be measured. 

• Rays are launched spherically from each transmitter and traced as they bounce off and hit new CAD 

surfaces.  

2.  PO:   

• Intersection points where rays have bounced off surfaces get replaced with an equivalent current.  

• Equivalent currents then are radiated to each field observation point as a function of the signal frequency.  

 

        To apply parallel processing to this problem, a Quadro®  FX 5800 device was provided by NVIDIA® . Two 

different versions are implemented, one using CUDA™ with a standard CPU ray tracer that takes advantage of the 

GPU shared memory, and another that uses only the GPU global memory but with NVIDIA®’s OptiX™ package for 

its ray tracer. Both versions were able to use this GPU’s 240 cores (4GB global memory, 30 multiprocessors) to 

simulate field profiles over 150x faster than with a standard CPU. 

Introduction CUDA™ Implementation Results 

2.  Radiation from source to all Nhit ray hit points 

  

    The incident field from the source needs to be computed at every initial ray 

hit point, and then its phase updated for all subsequent ray bounces in order 

to find the surface currents. 

  

• A 2D grid of blocks is allocated (2D is to avoid grid dimensional limit). 

• Each block in the grid computes the incident field at L ray hit points for 

all Nfreq frequencies.  

• The exact number of ray hit points per block is based on the amount of 

shared memory available per block. 

• For a single frequency simulation this is around 110 hits per block.  

More frequencies require more memory and therefore allow fewer ray 

hits per block. 

• Each thread within the block (maximum of 512) computes the incident 

field for one combination of frequency and hit point. 

• The field values for all frequencies and all hit points are stored in device 

global memory to be used by the next step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.  Radiation from source to all Nobs observation points 

  

    The incident field from the source needs to be computed at every 

observation point in order to determine the total field. 

  

• A 2D grid of blocks is allocated (2D is to avoid grid dimensional limit). 

• Each block in the grid computes the incident field at M observation 

points for all Nfreq frequencies. 

• The exact number of observation points per block is based on the 

amount of shared memory available per block. 

• For a single frequency simulation this is around 290 observation points 

per block.  More frequencies require more memory and therefore allow 

fewer observation points per block. 

• Each thread within the block (maximum of 512) computes the induced 

current and incident field for one combination of frequency and 

observation point. 

• The field values for all frequencies and all observation points are added 

to the scattered field values in device global memory before transferring 

the result back to the host machine for visualization. 

    Both versions of the CUDA™ implementation of the PO-

SBR algorithm applied in this study gave roughly the same 

performance.  When analyzing a multiple source simulation 

the GPU has reached speeds over 150x faster than the CPU 

alone (see HPEC 2010 presentation).  After running the code 

and returning all field values to the host machine, MATLAB®  

was used to load and plot the results.  Shown below are 

examples where the magnitude of the electric field (in dB) is 

plotted at different resolutions corresponding to a single 

Hertzian dipole antenna source radiating at a single frequency 

of 2 GHz.  The simulation time and speed-up factors listed are 

for the radiation calculations, not including the ray tracing time 

which was not a significant part of the total run time for these 

cases.  It can be seen that the speed-up over CPU is not very 

noticeable for small amounts of observation points because 

the GPU is not being fully utilized.  But for large amounts of 

observation points here it grows to a factor of 50x. 
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    The total field at each observation point is equal to the incident field plus 

the scattered field.  This process of bouncing rays, inducing surface 

currents, and radiating fields is repeated for all frequencies, all rays, and all 

observation points. 

1.  Tracing of rays 

  

    Millions of rays are launched from the source and are allowed to bounce around the scene which can be described 

by millions of triangular CAD facets. 

  

• Version 1:  Implemented on CPU with modified version of PBRT code (www.pbrt.org).  Traces all rays to 

completion and passes entire ray history (Nhit hit points, surface normals, and ray directions) to GPU.  The rest of 

the CUDA™ implementation shown here is for this version. 

• Version 2:  Implemented on GPU with NVIDIA® 's OptiX™ package (www.nvidia.com/object/optix.html).  Traces a 

subset of all rays and retains ray history in global memory of GPU.  This version was presented at HPEC 

workshop (www.ll.mit.edu/HPEC/2010). 
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* MATLAB is a registered trademark of The MathWorks, Inc. in the U.S. and other countries. 
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• 10,000 Observation Points 

 

 

 

 

 

         

 

 

 

 

• 2,500 Observation Points 

 

 

 

 

 

 

 

 

 

 

 

 

• 250,000 Observation Points 
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3.  Radiation from all Nhit ray hit points to all Nobs observation points 

  

    The induced surface current from each hit point needs to be radiated to 

every observation point in order to find the scattered field contributions. 

  

• A 2D grid of blocks is allocated (2D is to avoid grid dimensional limit). 

• Each block in the grid computes the scattered field at M observation 

points for all Nfreq frequencies. 

• The exact number of observation points per block is based on the 

amount of shared memory available per block. 

• For a single frequency simulation this is around 290 observation 

points per block.  More frequencies require more memory and 

therefore allow fewer observation points per block. 

• Each thread within the block (maximum of 512) computes the induced 

current and scattered field for one combination of frequency and 

observation point. 

• This requires the host calling kernels sequentially for each hit point, 

looping through each hit point to accumulate the field values at all 

observation points in device global memory to be used by the next step. 

  

 

Timing Comparison 

Nobs  CPU (sec) GPU (sec) Speedup 

100 1.79 0.95 1.88 

2,500 41.09 1.31 31.37 

10,000 163.40 3.78 43.23 

250,000 3,917.41 75.88 51.63 
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