
I

II

q1

q2

Multiplying the speed-ups: GPU-accelerated, fast multipole BEM,
for applications in protein electrostatics.

Lorena A Barba1, Rio Yokota1, Jaydeep P Bardhan2, Matthew G Knepley3

1 Boston University, 2 Rush University Medical Center, 3 University of Chicago
Far left: A lysozyme molecule surface, shown in transparency,
with the atomic locations inside. The surface has 100k points.
Left: An arrangement of 1000 such molecules, randomly placed
inside a cubic volume.

Lysozyme—abundant in secretions, such as tears and saliva—is
part of the immune system and a natural form of protection from
pathogens such as E.coli.

With O(100k) panels on the surface, our FMM software is ~100x faster than direct summation on the GPU. On one GPU, the FMM-accelerated
boundary element method (BEM) solver is ~10x faster than on one CPU—this is application speedup (not an inner kernel!).

G
PU

 T
ec

hn
ol

og
y

C
on

fe
re

nc
e,

 S
ep

te
m

be
r 2

0
10

A quote. It expresses our motivation The model. Continuum electrostatics

“... the fundamental law of computer science [is]: the faster the computer, the
greater the importance of speed of algorithms.”
Trefethen & Bau, Numerical Linear Algebra, SIAM (1997)

What’s new? Fast algorithms on the GPU

The first wave of successful applications of GPUs to scientific computing was
crowded with highly parallel methods. The paradigmatic example is molecular
dynamics and other N-body simulations, where the embarrassingly parallel
problem of calculating the all-pairs interactions exploits the fine-grained par-
allelism of the hardware very well. But the easy pickings are running out.

Many important applications involve intricate algorithms that require “going
back to the algorithmic drawing board” (to quote an Intel blog) for a successful
implementation on the GPU. This is the case of fast, O(N) algorithms like the
fast multipole method (FMM). The FMM accelerates N-body problems by
representing clusters of bodies with series expansions, and using a hierarchical
tree structure to organize the bodies in space. There are various operations
needed in a tree or FMM algorithm. We have ported all of them to the GPU.

M2M
multipole to multipole
treecode & FMM

M2L
multipole to local
FMM

L2L
local to local
FMM

L2P
local to particle
FMM

P2P
particle to particle
treecode & FMM

M2P
multipole to particle
treecode

source particles
target particles

information moves from red to blue

P2M
particle to multipole
treecode & FMM

Molecular dynamics is very detailed and accurate, but spends too much time
computing the surrounding water molecules. An alternative
model considers the molecule and the water as continuum
dielectric media. Point charges are placed at the
location of atoms inside the molecule.
This results in a mixed-dielectric Poisson problem.

The problem can be written as a boundary-integral equation for charge density
on the molecular surface:

Who cares? Bioelectrostatics is important

Method. Fast multipole BEM

Want more? Papers and software are online

P2P M2L M2P
0

50

100

150

200

250

300

350

G
Fl

op
s

N=104

N=105

N=106

N=107

Actual performance on the GPU of three core kernels,
for four different values of N.

The impact of GPU acceleration is
greater for large problems. Also, the
cross-over point between a direct
evaluation and the FMM occurs at
higher N on the GPU than CPU.

For N > 4 x 104, the FMM on the
GPU is faster than the direct all-
pairs evaluation.

Results. Multi-GPU performance

1 2 4 8 16 32 64 1280

20

40

60

80

100

120

140

160

180

200

Nprocs

tim
e

x
N

pr
oc

s [s
]

tree construction
mpisendp2p
mpisendm2l
P2Pkernel
P2Mkernel
M2Mkernel
M2Lkernel
L2Lkernel
L2Pkernel

To demonstrate the capability on large problems, we use a large collection of ran-

domly oriented lysozyme molecules, arranged inside a cubic volume. One such

collection is shown in the figure above. This setup is meant to mimic Brownian

dynamics of a crowded molecule environment.

The largest calculation we conducted consists of

 • 10,648 lysozyme molecules

 • each surface discretized into 102,486 elements

 • more than 20 million atoms

 • over 1 billion unknowns
This calculation required only ~1 min per iteration on 512 GPUs, using the cluster

of the Nagasaki Advanced Computing Center, which was inexpensively built with

144 host nodes and 288 GTX 295 cards (PI: Prof. T. Hamada).

The strong scaling of the FMM on multi-GPUs is shown below, up to 128 GPUs.

Electrostatic interactions play a crucial role in the function of biological
molecules. Functional properties that are ruled by electrostatics include:

1) electron transfer reactions
 • involved in key transduction processes,
 e.g., photosynthesis
2) ligand binding to proteins
 • involved in structure-based drug desing
3) enzyme catalysis
 • involved in all chemistry of life!
 • behind much of biotechnology, e.g., biofuels
4) protein folding and stability
 • involved in diseases like Alzheimer’s

All the codes developed in our group are free (like free beer) and open source.
To download them, follow the links from our group website:

 http://barbagroup.bu.edu

Also on the website are up-to-date bibliographic references, and papers for
download. Please visit!

The surface charge density reproduces the potential of the orginal problem,
but in a homogeneous dielectric space.

The boundary element method (BEM) solution of the integral equation problem
results in a linear system with N unknows, with a dense matrix. Solving it with
iterative methods would require O(N2) calculations for the matrix-vector
products.

We have developed a fast multipole (BEM) for biomolecular
electrostatics. With GPU acceleration of the FMM,
there is a multiplicative speed-up resulting from
the fast O(N) algorithm and GPU hardware.
We can obtain converged results for multi-
million atom system in less than an hour,
using multi-GPU clusters.

Now the bottleneck is
generating the
surface mesh.

0

50

100

150

200

cp
ut

im
e

[s
]

tree construction
mpisendp2p
mpisendm2l
P2Pkernel
P2Mkernel
M2Mkernel
M2Lkernel
L2Lkernel
L2Pkernel

0

50

100

150

200

tree construction
mpisendp2p
mpisendm2l
chunking task
buffering data
cudaSetDevice
cudaMalloc
cudaMemcpy
cudaKernel

II

I

q1

q2

I

+

− −

−
−

− −

− −
−

−
+++

+

+ +

+
+

+g I

q1

q2

