
The Parallel Programming
Implementation Gap

Streamlining Workflow with Guidance
from an Application Framework

Application Context

Software Architecture

Reference Implementation

Extension Points

Jike Chong, Ekaterina Gonina, Kurt Keutzer, Department of Electrical Engineering and Computer Science, University of California, Berkeley
jike@eecs.berkeley.edu, egonina@eecs.berkeley.edu, keutzer@eecs.berkeley.edu

Parallel Computing Lab

ASPA

Specify

Architect

Implement

Application!

Domain!

Expert"

Expert !

Parallel !

Programmer"

Application!

Domain!

Expert"

Expert !

Parallel !

Programmer"

End-user

Application

Parallel
Software

Expertise Required"

Current Industry !
Best-Practice!

Parallel Application

Development Flow!

Specify

Match

Customize

Application!

Domain!

Expert"

Application!

Domain!

Expert"

Parallel
Software

Expertise Required"

Application!

Domain!

Expert"

End-user

Application

Reference !

design"

Extension !

points "

Plug-in !

examples"

Application !

Frameworks"

Application context

description"

Pattern-based

software !

architecture"

Proposed"
Assisted !

Parallel !

Application "
Development Flow"

Provide"
Implementation"

Support"

Without the framework:

1."Specify: Highlight application characteristics

2."Architect: Define the organization of a

software program in terms of parallel

programming patterns

3." Implement: Construct functions, test and

verify correctness and performance

Very few teams have both the application domain

expertise and the parallel programming expertise

This severely limits the development and

deployment on highly parallel microprocessors

Case Study with an Application
Domain Expert ! 20x Application
Performance Improvement on GPU

Key Lessons

Obs 1 Obs 2 Obs 3 Obs 4 "

State 1"

State 2"

State 3"

State N"

Time!

…
"

…
"

…
"

…
"

…
"

1. Forward Pass"

2. Backward Pass"

Observations!

Speech!

Model "

States!

An Observation!A State!

P(xt|st) P(st|st-1) m [t-1][st-1] m [t][st]

 Legends:"

 Model size for a WFST language model"

A Pruned State!

 # states: 4 million, # arcs: 10 million, # observations: 100/sec#
 Average # active states per time step: 10,000 – 20,000!

Read Files!

Initialize data

structures!

CPU"

GPU"

Backtrack!

Output Results!

Phase 0!

Phase 1!

Compute Observation

Probability!

Phase 2!

Graph Traversal!

Save !

Backtrack Log!

Collect #

Backtrack Info!

Prepare ActiveSet!

Iteration Control!

File Input!

Pruning Strategy!

Observation#

Probability #

Computation!

Result Output!

Fixed Beam Width!

Adaptive Beam Width!

HMM HTK GPU ObsProb!

HMM SRI GPU ObsProb!

CHMM GPU ObsProb!

HTK HResult format!

SRI Scoring format!

Framework! Plug-in!

HTK Format!

SRI Format!

Key:!

CHMM Format!

CHMM Scoring format!

Read Files!

Initialize data

structures!

CPU"Manycore GPU"

Backtrack!

Output Results!

Phase 0!

Phase 1!

Compute Observation

Probability!

Phase 2!

Graph Traversal!

Save !

Backtrack Log!

B
acktrac

k Tab
le
"

A
ctive
!

S
et"

L
M
"

H
M

M
"

W!

R#
W!

R!

R!W!

Data"Control"Data" Control"

R!

R
W!

R!

W! W!

R
W!

R!

Collect #

Backtrack Info!

Prepare ActiveSet!

Iteration Control!

Inference Engine: Beam Search with Graph Traversal!

Speech

Feature
Extractor!

Inference !

Engine!

Voice

Input"

Recognition Network"

Speech!
Features"

Word!

Sequence"

!
"

I think

therefore

I am

Acoustic

Model!

Pronunciation

Model!

Language

Model!

Bulk
Synchronous"

Task
Graph"

MapReduce"

Iterative through inputs"
one time step at a time!

In each iteration, perform
Viterbi "
algorithm "

steps!

In each step, consider
alternative interpretations !

Read Files!

Initialize data

structures!

CPU"

GPU"

Backtrack!

Output Results!

Phase 0!

Phase 1!

Compute Observation

Probability!

Phase 2!

Graph Traversal!

Save !

Backtrack Log!

Collect #

Backtrack Info!

Prepare ActiveSet!

Iteration Control! Fixed Beam Width!

CHMM GPU ObsProb"

CHMM Format"

CHMM Scoring format"

Prof. Dorothea Kolossa
Speech Application Domain Expert

Technische Universität Berlin

Extended audio-only speech recognition

framework to enable audio-visual
speech recognition (lip reading)

Achieved a 20x speedup in application performance
compared to a sequential version in C++

The application framework enabled a Matlab/Java
programmer to effectively utilize a highly parallel

platform
Dorothea Kolossa, Jike Chong, Steffen Zeiler, Kurt Keutzer, “Efficient Manycore CHMM Speech Recognition for

Audiovisual and Multistream Data”, To be published at Interspeech 2010.

!"Is a description of the application
characteristics and requirements

!"Exposes concurrency independent
of the implementation platform

!"For application domain experts:

•" Provides the context for
understanding the motivations of
parallelization decisions made in
the software architecture of an
application framework

Target Application: Automatic Speech Recognition (ASR)

HW Platform

Application
Developer

Application domain
experts make design

trade-offs without full view
of parallel performance

implications

Expert
Parallel

Programmer

Expert parallel
programmer has limited

knowledge of application
design trade-offs

Application

Platform

Im
p

le
m

e
n

ta
ti

o
n

 G
a

p

Voice Input

Recognize Speech"

r eh k ax g n ay z ‘ s p iy ch

 A S R"

Recognition Output

Core

Core

Core

C
a
c
h
e

C
a
c
h
e

C
a
c
h
e

Core

Core

Core

C
a
c
h
e

C
a
c
h
e

C
a
c
h
e

GTX480

With the guidance of an application framework:

1."Specify: Highlight application characteristics

2."Match: Select an application framework to use,

analyze the highlighted potential bottlenecks,

understand the data types and APIs

3."Customize: Leverage reference implementation

and develop plug-ins for new functions

Parallel programming expertise required only in the

development of the application framework

With the framework, developers with only

application expertise can still benefit from GPUs

Both application domain expertise and parallel programming

expertise are required to effectively utilize highly parallel

microprocessors like the GPU

Example:

!"ASR analysis of an utterance
from an acoustic waveform
to infer the most likely word sequence intended by the speaker

!"Inference is based on the hidden Markov model (HMM) and uses the
Viterbi algorithm, which iteratively operates on a sequence of
observations and keeps track of sets of alternative interpretations

!"There are four levels of concurrency in the algorithm

1.# Among different segments of speech utterances

2.# Among forward and backward pass of the Viterbi algorithm

3.# Among algorithmic steps within a Viterbi iteration in a time step

4.# Among different alternative interpretations in a Viterbi iteration

Speech

Feature
Extractor!

Inference !

Engine!

Voice

Input"

Recognition Network"

Speech!
Features"

Word!

Sequence"

!
"

I think

therefore

I am

Acoustic

Model!

Pronunciation

Model!

Language

Model!

!"Is a hierarchical composition of
parallel programming patterns that
assists in navigating the reference
implementation

!"For application domain experts:

•" Helps to organize their efforts
around the fundamental
limitations and constraints of
implementing the application on
highly parallel microprocessors

Example:

!"The hardware targeted is the NVIDIA GTX480

!"For efficient implementations, one must leverage the wide
vector units, the GPU memory hierarchy, and the
synchronization primitives within and between cores

!"With respect to the four levels of concurrency:

1.# No. Data working set too large for manycore parallelism

2.# No. Workload not balanced, too little work in backward pass

3.# No. Too many intermediate operands to pass between steps

4.# Yes! 10,000+ way concurrency for data parallel operations, but
many implementation challenges – irregular graph traversal

guided by input known only at runtime, frequent memory write

conflicts that require fast synchronization between cores

!"Is a fully functional, efficiently
implemented sample parallel design
of the application

!"Provides a concrete example of how
each component in the application
framework could be implemented, and
how they can be integrated

!"For application domain experts:

•" Relieves the burden of constructing
functionally-correct baseline
implementations before introducing
new features

Example:

!"Forward pass on the GPU, backward pass on the CPU

!"Challenges resolved in the forward pass on the GPU:

1.#Constructed efficient dynamic vector data structures to

handle irregular graph traversals

2.#Implemented an efficient find-unique function to

eliminate redundant work by leveraging the GPU
global memory write-conflict-resolution policy

3.#Implemented lock-free accesses of a shared map

leveraging advanced GPU atomic operations to enable
conflict-free reduction

4.#Used hybrid local/global atomic operations and local
buffers for the construction of a global queue to avoid

sequential bottlenecks in accessing global queue control variables

!"Are a set of interfaces defined to
summarize the interactions
between the application
framework and potential new
modules

!"For application domain experts:

•" Provide flexible interfaces for
implementing plug-ins to
extend the framework functions
without jeopardizing the
execution efficiency in the
application framework

Example:

!"Extension points implemented using
Abstract Factory creational object-
oriented programming pattern

!"Three extension points implemented:

1.#Observation Probability Computation

2.#Pruning Strategy

3.#Result Output

!"Many pre-defined plug-ins available

!"New plug-ins can be developed by
application domain experts

!" Robustness of speech recognition can be significantly improved by multi-stream
inputs and especially by audio-visual speech recognition (enabling lip-reading)

!" Coupled hidden Markov models (CHMMs), with their tolerance for stream
asynchronicities, can provide a flexible integration of these streams

!" Targets human-computer interactions in noisy reverberant environments:

!" Ticket machine in train stations, information booth in tourist hot spots

!" Using the ASR application framework:

!" A CHMM can be compiled into
a WFST for use as speech model

!" Observation Probability
Computation was extended

with a new plug-in to handle

multiple streams

!" New input/output plug-ins

!" Platforms used:

!" CPU: i7 920, 12GB mem,
sequential application using

one of the four cores

!" GPU: GTX480, 1.5GB mem,
data parallel operation on

15 multiprocessor cores

!" Application framework for parallel programming is
developed to help application domain experts effectively
utilize highly parallel Microprocessors

!" The ASR application framework has enabled a Matlab/
Java programmer to achieve 20x speedup in her
application by extending an audio-only speech
recognition reference implementation to an audio-visual
speech recognition application

!" It is an effective approach for transferring tacit knowledge
about efficient, highly parallel software design for use by
application domain experts

!" With the proliferation of highly parallel computation from
servers to workstations to laptops and portable devices,
there will be an increasing demand for adapting business
and consumer applications to specific usage scenarios

!" Application frameworks for parallel programming will be
an important force for accelerating the adoption of highly
parallel microprocessors

Thanks to Dorothea Kolossa, Steffen Zeiler for their collaboration in the case study.
Thanks to Nelson Morgan, Andreas Stolcke, and Adam Janin at ICSI for insightful discussions and continued support in the infrastructure used in this research.

This research is supported in part by an Intel Ph.D. Fellowship.

This research also supported in part by Microsoft (Award #024263) and Intel (Award #024894) funding and by matching funding by U.C. Discovery (Award #DIG07-10227).

GPU 115.6 118.3 124.2 135.1

1.887543253 3.49704142 6.466183575 11.85936343

218.2!

413.7!

803.1!

1602.2!

3185.1!

115.6! 118.3! 124.2! 135.1! 157.4!

10!

100!

1000!

10000!

1! 2! 4! 8! 16!

R
u

n
ti
m

e
 [

m
s
]!

Number of Mixtures!

CPU! GPU!

(1.9x)!
(3.5x)!

(6.5x)!
(11.9x)!

(20.2x)!

Runtime in ms per file of 3s length for M =

1,2,...,16 mixture components. The speedup

factor is given in parentheses.

