
Scalable Computer Vision Applications
Rami Mukhtar, Ben Lever, and Trevor L. McDonell

{rami.mukhtar, ben.lever, trevor.mcdonell}@nicta.com.au

High Level Description of
Computer Vision Algorithms

Computer
Vision

Primitives
Library

GHC Haskell
Compiler

Target Platform
Specific Runtime

Target Code Generation

Target HW
Topology

Description

Multi-platform
binary executable

High Level
Algorithm
Description

CPU Build
Tool Chain
(gcc/llvm)

GPU Build
Tool Chain

(nvcc)

Device specific
binary executable

Advantages
• Efficiency: Rapid algorithm implementation –

concisely describe computer vision algorithms
using a domain specific language;

• Scalability: Single algorithm description
scales with hardware capabilities (processing
capacity, camera configuration);

• Portability: Just in time code generation
enables generation of efficient code,
specialized to the underlying

 hardware.

Current Status
The project is still in an early research stage. We currently have a working
‘proof of concept’ framework that enables some computer vision algorithms to
be described and deployed on a single camera hardware platform. Currently
the algorithm designer needs to indicate which components are to be run on
the GPU. The current implementation is able to make use a quad core host
CPU and a single GPU. Preliminary results for the Canny edge detection
example are given below. CPU Code GPU Code

Target HW
Platform

Single
Algorithm
Description

Camera CPU CPU GPU CPU GPU

GPU CPU

CPU

CPU

Automatically scales to use available HW

When executed calls the runtime to
query the camera count and
compute node configuration, and
determine the optimal mapping of
the algorithm to the hardware. The
runtime is then called to generate
efficient device specific code. This
process is repeated when the
underlying hardware configuration
changes (e.g. addition/removal of
cameras).

Compiled by GHC Haskell
compiler to generate a host
CPU executable.

1 CPU Core 2 CPU Core 3 CPU Core 4 CPU Core 1 CPU +
GeForce
GT330M GPU

1x 1.68x speedup 2.39x speedup 2.68x speedup 5.15x speedup

AMD Phenom II X4 945 Quad Core 3GHz

Future Work
Our short term goals include:
• Extending the language to concisely describe a wider range of computer

vision algorithms;
• Improving the efficiency of the GPU kernels for the performance primitives;
• Automating the partitioning and mapping process.
Longer term goals include:
•  Language and runtime support for multiple camera inputs;
•  Runtime support for distributed computation that accounts for the limitations

in network capacity and bandwidth.

CPU + GPU code is executed on
the target platform.

canny img = nonMaxSup intensity orientation
 where
 blured = blur img
 dX = xGrad blured
 dY = yGrad blured
 intensity = mag dX dY
 orientation = ori dX dY

yGrad

xGrad

mag

ori

blur nonMaxSup

Canny Edge Detection Example

nonMaxSup int ori = stencil2 isMaxOri int ori

isMaxOri ((tl, t, tr),
 (l, m, r),
 (bl, b, br)) -- 3x3 intensity stencil
 ((o)) -- 1x1 orientation stencil
 | o == horiz = isMax t b
 | o == vert = isMax l r
 | o == posDiag = isMax tl br
 | o == negDiag = isMax tr bl
 | otherwise = False
 where
 isMax a b | m < a = False
 | m < b = False
 | otherwise = True

Non-Maximum Suppression

br b bl

r m l

tl t tr
The middle pixel (m) is
classified as an edge if
its gradient intensity is
greater that the
intensity of the two
pixels normal to its
orientation (tl and br).

Runtime queries the
hardware to determine its
configuration.

Camera

Camera

Camera

Camera

Camera

Camera

Camera

Camera

Camera

To track our progress go to:
http://www.nicta.com.au/research/projects/scalable_vision_machines

The above results demonstrate that a single algorithm implementation (200
lines of code) scales to use the additional hardware resources. At this early
stage of the research we are not yet using shared (on-chip) GPU memory,
hence we would expect the speedup ratio for the GPU case to increase
significantly once on-chip memory is used.

C
om

pi
le

Ex

ec
ut

e

