
Albert Sidelnik (UIUC), María J. Garzarán (UIUC), David Padua (UIUC), Brad Chamberlain (Cray Inc.)
asideln2@illinois.edu garzaran@illinois.edu padua@illinois.edu bradc@cray.com

Language and Compiler Extensions for

Heterogeneous Computing

Acknowledgments

This material is based upon work

supported by the National Science

Foundation under Awards CCF

0702260, CNS 0509432, the Defense

Advanced Research Projects Agency

under its Agreement No. HR0011-07-9-

0001. Any opinions, findings and

conclusions or recommendations

expressed in this material are those of

the author(s) and do not necessarily

reflect the views of the Defense

Advanced Research Projects Agency.

Conclusions

•In this work we show that it is

possible to target heterogeneous

architectures using high-level

languages that were built from the

ground up to support parallelism

without any substantial loss in

performance when compared to a

low-level programming model.

•If the user needs the low-level

facilities offered by a model such as

CUDA, Chapel provides low-level

CUDA-like features for the user to

leverage.

To learn more about Chapel, visit

http://cray.chapel.com

Introduction

Heterogeneous systems have many

advantages:

• Very high bandwidth and FLOP count

• Performance / (Cost and Power) ratio is

high

• Low-level existing programming models

such as CUDA or OpenCL have made it

somewhat easier to program compared

to earlier efforts

Downsides to programming accelerators:

• Tremendous effort required to optimize

• Lack of automatic scheduling

• Explicit data transfers

• Different programming models for each

component (CUDA, OpenMP, MPI, etc..)

co-exist in the same program leading to

a loss of portability

Motivation #2 – Jacobi Method 2D

config const n = 200, epsilon = 0.0001;

const gpuDist = new GPUDist(rank=2, tbSizeX=16, tbSizeY=16);

const ProbSpace: domain(2) distributed gpuDist = [1..n,1..n];

const BigDomain: domain(2) distributed gpuDist = [0..n+1,0..n+1];

var X, Xnew: [BigDomain] real;

X[n+1, 1..n] = 1.0;

var iteration = 0, delta: real;

const north = (-1,0), south = (1,0), east = (0,1), west = (0,-1);

do {

forall ij in (gpuProbSpace) do

Xnew(ij) = (Xnew(ij+north)+Xnew(ij+south)+ Xnew(ij+west)+Xnew(ij+east))/ 4.0;

delta = max reduce abs(Xnew[ProbSpace]- X[ProbSpace]);

} while (delta > epsilon);

Results – Parboil Benchmark Suite http://impact.crhc.illinois.edu/parboil.php

Experimental results using the Parboil Benchmark Suite based on real applications

written in CUDA. Experiments were made using a Nvidia GTX280 GPU with the CUDA

2.3 environment.

For these benchmarks, we compare the original CUDA implementation, and the

benchmarks ported to Chapel using both implicit and explicit data transfers.

Future and Ongoing Work

•Provide support for texture memory

•Implement support for whole-array

operations and perform optimizations to fuse

them into a single kernel

•Improve current conservative approach to

implicit data transfers

•Develop compiler analysis to detect ideal

forms of memory to place data into

•Enable through language and compiler

support, overlapping computation and

communication over an accelerator

•Extend the current GPUDist distribution to

support clusters of accelerators or other

heterogeneous nodes

•Develop autotuning techniques to study

optimization strategies leading to programs

self-adapting at run-time including scheduling

decisions based on characteristics of the

data

•Close the performance gap between Chapel

and CUDA

•Generate OpenCL code in addition to CUDA

for additional accelerator portability

0

20

40

60

80

100

120

140

160

180

200

CP Cuda Chapel Implicit Chapel Explicit

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
s)

Coulombic Potential (CP)

I/O Time (ms) Compute (ms)

0

5

10

15

20

25

30

Cuda Chapel Implicit Chapel Explicit

Magnetic Resonance Imaging Q
(MRI-Q)

0

200

400

600

800

1000

1200

1400

Cuda Chapel Implicit Chapel Explicit

Two Point Angular Correlation
Function (TPACF)

Method

Chapel Background
• Part of the Darpa led HPCS program

intended to increase programmer

productivity on high-end systems

• Supports task-, data-, and nested-

parallelism

• Parallel concepts influenced by ZPL and

HPF

• Domains are first-class objects in Chapel

to describe a multi-dimensional index

space

• E.g. var dom = [1..100];

Language Extensions
• Arrays that need to be used on the

accelerator are declared using the

distribution GPUDist

• Depend on forall as the main support for

data-parallelism on a device

• Leverage Chapel’s support for user-

defined distributions[1]

• Low-level support for different

accelerator memory spaces including

shared and constant memory

• Support for both explicit and implicit data

transfers

• Current ongoing work in supporting

whole array assignments and operations

• Support for reduction and scans

Compiler Support
• Currently generates CUDA code for the

accelerator kernels and C for the host

• Compiler analysis for implicit data

transfers between host and device

• Memory optimizations

Motivation – HPCC Stream

config const m = 1000, tbSizeX = 256;

const alpha = 3.0;

const ProbDist = new GPUDist(rank=1, tbSizeX);

const ProbSpace: domain(1) distributed ProbDist = [1..m];

var A, B, C: [ProbSpace] real;

forall (a,b,c) in (A,B,C) do
a = b + alpha * c;

New configuration constant to

specify # threads per block

Distribution changed to target a GPU

Loops and arrays using this domain

are implemented on the GPU

No changes required to the

computation for other architectures

•The above code can run on either a GPU, Multi-core, or Distributed memory architecture

by plugging in a different distribution such as Block, Cyclic, Block-Cyclic, etc.

•Even though a performance comparison is not shown (due to lack of space), this version

of Stream matches the performance the CUDA implementation of Stream.

• The difference in compute performance between the Chapel and CUDA for CP,

TPACF, and MRI-Q are due to additional overhead-code being generated by the

Chapel compiler. Ongoing work is being done to lower this overhead.

• TPACF is purely compute bound with very little data transfers between the host

and device making time spent in I/O negligible.

Goals of this project

• Write portable codes: The same program

can be compiled and optimized for

different classes of architectures, with the

focus being on systems containing

accelerators

• Leverage the language Chapel. The notion

of parallelism and locality is built into

Chapel from the ground up rather than

using ad-hoc libraries or directives. Take

advantage of the data parallel primitives of

Chapel

• Show that it is possible to write accelerator

code in a high-level language and achieve

similar results as one would in a language

such as CUDA

[1] B. Chamberlain, S. Deitz, D. Iten, S. Choi

User-Defined Distributions in Chapel

In Proceedings of the 2nd USENIX Workshop on Hot Topics in Parallelism (HotPar) 2010

0

10

20

30

40

50

60

70

80

Cuda Chapel Implicit Chapel Explicit

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
s)

Magnetic Resonance Imaging FHD
(MRI-FHD)

http://cray.chapel.com/
http://impact.crhc.illinois.edu/parboil.php

