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Conclusions

•In this work we show that it is 

possible to target heterogeneous 

architectures using high-level 

languages that were built from the 

ground up to support parallelism 

without any substantial loss in 

performance when compared to a 

low-level programming model.

•If the user needs the low-level 

facilities offered by a model such as 

CUDA, Chapel provides low-level 

CUDA-like features for the user to 

leverage.

To learn more about Chapel, visit 

http://cray.chapel.com

Introduction

Heterogeneous systems have many 

advantages:

• Very high bandwidth and FLOP count

• Performance / (Cost and Power) ratio is 

high

• Low-level existing programming models 

such as CUDA or OpenCL have made it 

somewhat easier to program compared 

to earlier efforts

Downsides to programming accelerators:

• Tremendous effort required to optimize

• Lack of automatic scheduling

• Explicit data transfers

• Different programming models for each 

component (CUDA, OpenMP, MPI, etc..) 

co-exist in the same program leading to 

a loss of portability

Motivation #2 – Jacobi Method 2D

config const n = 200, epsilon = 0.0001;

const gpuDist = new GPUDist(rank=2, tbSizeX=16, tbSizeY=16);

const ProbSpace: domain(2) distributed gpuDist = [1..n,1..n];

const BigDomain: domain(2) distributed gpuDist = [0..n+1,0..n+1];

var X, Xnew: [BigDomain] real;

X[n+1, 1..n] = 1.0;          

var iteration = 0, delta: real;

const north = (-1,0), south = (1,0), east = (0,1),  west = (0,-1);

do {

forall ij in (gpuProbSpace) do

Xnew(ij) = (Xnew(ij+north)+Xnew(ij+south)+ Xnew(ij+west)+Xnew(ij+east))/ 4.0;

delta = max reduce abs(Xnew[ProbSpace]- X[ProbSpace]);

} while (delta > epsilon);

Results – Parboil Benchmark Suite http://impact.crhc.illinois.edu/parboil.php

Experimental results using the Parboil Benchmark Suite based on real applications 

written in CUDA. Experiments were made using a Nvidia GTX280 GPU with the CUDA 

2.3 environment.

For these benchmarks, we compare the original CUDA implementation, and the 

benchmarks ported to Chapel using both implicit and explicit data transfers.

Future and Ongoing Work

•Provide support for texture memory

•Implement support for whole-array 

operations and perform optimizations to fuse 

them into a single kernel

•Improve current conservative approach to 

implicit data transfers

•Develop compiler analysis to detect ideal 

forms of memory to place data into

•Enable through language and compiler 

support, overlapping computation and 

communication over an accelerator

•Extend the current GPUDist distribution to 

support clusters of accelerators or other 

heterogeneous nodes

•Develop autotuning techniques to study 

optimization strategies leading to programs 

self-adapting at run-time including scheduling 

decisions based on characteristics of the 

data

•Close the performance gap between Chapel 

and CUDA

•Generate OpenCL code in addition to CUDA 

for additional accelerator portability
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Method

Chapel Background
• Part of the Darpa led HPCS program 

intended to increase programmer 

productivity on high-end systems

• Supports task-, data-, and nested-

parallelism

• Parallel concepts influenced by ZPL and 

HPF

• Domains are first-class objects in Chapel 

to describe a multi-dimensional index 

space

• E.g. var dom = [1..100];

Language Extensions
• Arrays that need to be used on the 

accelerator are declared using the 

distribution GPUDist

• Depend on forall as the main support for 

data-parallelism on a device

• Leverage Chapel’s support for user-

defined distributions[1]

• Low-level support for different 

accelerator memory spaces including 

shared and constant memory

• Support for both explicit and implicit data 

transfers

• Current ongoing work in supporting 

whole array assignments and operations

• Support for reduction and scans

Compiler Support
• Currently generates CUDA code for the 

accelerator kernels and C for the host

• Compiler analysis for implicit data 

transfers between host and device

• Memory optimizations

Motivation – HPCC Stream

config const m = 1000, tbSizeX = 256;

const alpha = 3.0;

const ProbDist = new GPUDist(rank=1, tbSizeX);

const ProbSpace: domain(1) distributed ProbDist = [1..m];

var A, B, C: [ProbSpace] real;

forall (a,b,c) in (A,B,C) do
a = b + alpha * c;

New configuration constant to

specify # threads per block

Distribution changed to target a GPU

Loops and arrays using this domain

are implemented on the GPU

No changes required to the

computation for other architectures

•The above code can run on either a GPU, Multi-core, or Distributed memory architecture 

by plugging in a different distribution such as Block, Cyclic, Block-Cyclic, etc.

•Even though a performance comparison is not shown (due to lack of space), this version 

of Stream matches the performance the CUDA implementation of Stream.

• The difference in compute performance between the Chapel and CUDA for CP, 

TPACF, and MRI-Q are due to additional overhead-code being generated by the 

Chapel compiler. Ongoing work is being done to lower this overhead.

• TPACF is purely compute bound with very little data transfers between the host 

and device making time spent in I/O negligible.

Goals of this project

• Write portable codes: The same program 

can be compiled and optimized for 

different classes of architectures, with the 

focus being on systems containing 

accelerators

• Leverage the language Chapel. The notion 

of parallelism and locality is built into 

Chapel from the ground up rather than 

using ad-hoc libraries or directives. Take 

advantage of the data parallel primitives of 

Chapel

• Show that it is possible to write accelerator 

code in a high-level language and achieve 

similar results as one would in a language 

such as CUDA

[1] B. Chamberlain, S. Deitz, D. Iten, S. Choi

User-Defined Distributions in Chapel

In Proceedings of the 2nd USENIX Workshop on Hot Topics in Parallelism (HotPar) 2010
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