
INTRODUCTION

The Murchison Widefield Array (MWA), being built in Western Australia,
represents the next-generation of radio telescopes. The MWA is composed of
512 antennas sampling over 768 frequency bands that capture raw data from
the sky and create an image in real time through the use of interferometry. In
order to build the power spectrum of the image, the signals from each
antenna must be cross-correlated with every other, a process that scales as the
square of the number of antenna. Following the correlator, the signals are
sent to the imaging pipeline that creates the actual images of the sky. The
current implementation of the correlator is deployed on field-programmable
gate arrays (FPGAs) but the imaging pipeline is deployed using GPUs. The
purpose of this investigation was to determine if the correlator algorithm for
the MWA could be deployed on GPUs efficiently and effectively using the
Fermi architecture.

CROSS CORRELATION

The dominant part of the correlator algorithm, the so called X-engine,
involves the sum over many vector outer products of an input vector and its
conjugate transpose,

where Xt(f) is the (complex-valued) signal vector at time t and frequency f
and has dimensions N=2ns where ns is the number of antenna and the factor
of 2 comes from sampling X and Y polarizations. The resulting matrix A has
dimensions NxN but is Hermitian, so only the lower or upper triangular part
is required.

The correlation requires that all signals from all stations are cross-multiplied,
and this is required independently for all frequencies, frequency can thus be
trivially parallelized over. This leads to a computational cost that scales

where F is the number of frequencies. For the MWA, this requires ~128
TFLOPs of sustained computation. The future Square Kilometer Array
(SKA) will feature O(10,000) antenna, increasing cross-correlation to an
Exaflop problem.

 Michael Clark1, Paul La Plante2, and Lincoln Greenhill1
Achieving 1 TFLOP for the Radio Astronomy Correlator

1: Harvard-Smithsonian Center for Astrophysics, 2: Loyola University Maryland

Right, pictorial representation of the
correlator algorithm. Each antenna (station)
includes 2 complex-valued polarization
values. Since the two inputs of the outer
product are the signal data and its conjugate
transpose, the result is a Hermitian matrix,
so only the lower triangle is necessary. The
autocorrelations of a given station are
shown along the diagonal. For a given
antenna pair at a given frequency, the
algorithm accumulates over all time steps.

Performance using a
GeForce GTX 480 with
N=1024 (ns=512) and
F=12. The 1x1 or 2x2
labels the register tile
size. The naïve case
represents all threads
loading all data, the
shared memory uses the
shared memory for an
extra level of tiling.

FINE-TUNING OPTIMIZATIONS

Pre-calculation of row/column offsets With shared memory tiling, it was
necessary to differentiate warps threads for loading the row and column data.
Since the same threads loaded data corresponding to the same row or column
from time step to time step, we determined which thread loaded which data
outside of the loop over time. Once inside the time loop, we simply iterated a
pointer to coincide with the appropriate number for the next time step,
removing the logical statements from the main loop body.

Shared Memory Buffering The performance gain from unrolling the time
loop was limited by the necessary thread synchronizations. To reduce these
we doubled the size of the shared memory per block combined with an unroll
by of time loop by 2. By using different buffers for even and odd time, it
made it possible to read from shared memory and to write to shared memory
without thread synchronization in between. The result is a halving of the
number of synchronization points, and a significant speedup.

Textures By binding the input array to a 2D texture, with dimensions [Time]
x [Frequency.Antenna.Polarization], the texture unit performs the global
memory indexing for free. This brought an additional advantage of reducing
register pressure which had increased from the addition of time loop
unrolling.

RESULTS AND CONCLUSIONS

In this work we have demonstrated that cross-correlation can be very
efficiently performed using the Fermi architecture. Key to achieving this
high performance was a multi-level tiling strategy which required using
shared memory tiling to minimize global memory accesses, and register
tiling to hide shared memory accesses. We were able to achieve 78% of peak
performance, which on the GeForce GTX 480 corresponds to 1040 GFLOPS.
To our knowledge, this is the first time that a non-trivial application has
achieved this performance. With a sustained performance of 1 TFLOP, it
would require 128 GPUs to replace the current FPGA correlator for the
MWA.

REFERENCES
1. R. G. Edgar, et al. “Enabling a High Throughput Real Time Data Pipeline for a Large

Radio Telescope with GPUs.” Computer Physics Communications (to appear), 2010.
2. C. J. Lonsdale, et al. “The Murchison Widefield Array: Design Overview.” Proceedings of

the Ieee, 97(8):1497-1506, August 2009.

A(f) =
�

t

X†
t (f)⊗Xt(f),

INITIAL STRATEGY

Thread Indexing Each block of threads, of size BxB acts on a BxB block of
the matrix, i.e., one thread per antenna pair. Since only the lower triangular
half of the output matrix is required, the grid dimensions are set to

where the first grid dimension is used for triangular matrix index, and the
second for the trivial frequency index. The global matrix coordinates (i,j)
can then be obtained from

Naïve Implementation Each thread iterates through the time dimension,
accumulating the result for a fixed antenna pair in registers and is responsible
for loading all of the data required. This equates to two float4 loads: 1 row
value and 1 column value, each consisting of 2 polarizations x 2 from
complexity. The time average is over many thousands of samples, and so the
cost of writing the matrix elements is negligible. The resulting arithmetic
complexity of 1 flop per byte means the naïve implementation is bandwidth
bound (which is around 8 on a GTX 480), though the presence of L1 and L2
cache does help, achieving 390 GFLOPS.

TILING
Shared memory tiling To increase the arithmetic intensity, a shared
memory tiling strategy was employed. With 64 threads per thread block, it is
natural to use 8x8 tiling. This requires loading both a row and a column of
32 numbers (tile size x polarization x complexity). In this scheme, the first
warp would load the row vector, and the second warp reads in the column
vector. Each thread in a block only reads in a single float, and full coalescing
is obtained. When combined with the fined-tuning optimizations this raised
performance to 560 GFLOPS.

Register tiling Although shared memory has much faster bandwidth and
lower latency than device memory, it is no substitute for registers. Using a
2x2 register tiling (the maximum achievable with 64 registers) increases the
arithmetic intensity on the shared memory sourced loads to 4 which is
enough to hide this bottleneck. When combining the tiling strategies, the
shared memory tile size is quadrupled to 16x16, and each thread now loads a
float2 from device memory. Performance is increased to 960 Gflops, and
over the magical 1 TFLOP with the addition loading through the texture unit.

Cost ∼ F

�
N(N + 1)

2

�
,

X ∈ [T ime][Frequency][Antenna][Polarization]

A ∈ [Frequency][Antenna][Antenna][Polarization][Polarization]

grid = (
ns

2B
(
ns

B
+ 1), F),

���������	
�����������
��

�������
	
�����
�����
	��

������������
�
�������
��������	�

����������
��
��
����

��������	��������
���������������

j = �−1
2

+
�

1
4

+ 2 blockIdx.x� + threadIdx.x

i = blockIdx.x− j(j + 1)
2

+ threadIdx.y

i

j

Sunday, 15 August 2010

file://localhost/Applications/Font%20Book.app/
file://localhost/Applications/Font%20Book.app/

