
INTRODUCTION

The Murchison Widefield Array (MWA), being built in Western Australia, 
represents the next-generation of radio telescopes. The MWA is composed of 
512 antennas sampling over 768 frequency bands that capture raw data from 
the sky and create an image in real time through the use of interferometry.  In 
order to build the power spectrum of the image, the signals from each 
antenna must be cross-correlated with every other, a process that scales as the 
square of the number of antenna. Following the correlator, the signals are 
sent to the imaging pipeline that creates the actual images of the sky. The 
current implementation of the correlator is deployed on field-programmable 
gate arrays (FPGAs) but the imaging pipeline is deployed using GPUs. The 
purpose of this investigation was to determine if the correlator algorithm for 
the MWA could be deployed on GPUs efficiently and effectively using the 
Fermi architecture.

CROSS CORRELATION

The dominant part of the correlator algorithm, the so called X-engine, 
involves the sum over many vector outer products of an input vector and its 
conjugate transpose,

where Xt(f) is the (complex-valued) signal vector at time t and frequency f 
and has dimensions N=2ns where ns is the number of antenna and the factor 
of 2 comes from sampling X and Y polarizations.  The resulting matrix A has 
dimensions NxN but is Hermitian, so only the lower or upper triangular part 
is required. 

The correlation requires that all signals from all stations are cross-multiplied, 
and this is required independently for all frequencies, frequency can thus be 
trivially parallelized over. This leads to a computational cost that scales

where F is the number of frequencies.  For the MWA, this requires ~128 
TFLOPs of sustained computation.  The future Square Kilometer Array 
(SKA) will feature O(10,000) antenna, increasing cross-correlation to an 
Exaflop problem.  
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Right, pictorial representation of the 
correlator algorithm. Each antenna (station) 
includes 2 complex-valued polarization 
values.  Since the two inputs of the outer 
product are the signal data and its conjugate 
transpose, the result is a Hermitian matrix, 
so only the lower triangle is necessary. The 
autocorrelations of a given station are 
shown along the diagonal. For a given 
antenna pair at a given frequency, the 
algorithm accumulates over all time steps.

Performance using a 
GeForce GTX 480 with 
N=1024 (ns=512) and 
F=12.  The 1x1 or 2x2 
labels the register tile 
size. The naïve case 
represents all threads 
loading all data, the 
shared memory uses the 
shared memory for an 
extra level of tiling.

FINE-TUNING OPTIMIZATIONS

Pre-calculation of row/column offsets  With shared memory tiling, it was 
necessary to differentiate warps threads for loading the row and column data. 
Since the same threads loaded data corresponding to the same row or column 
from time step to time step, we determined which thread loaded which data 
outside of the loop over time. Once inside the time loop, we simply iterated a 
pointer to coincide with the appropriate number for the next time step, 
removing the logical statements from the main loop body.

Shared Memory Buffering The performance gain from unrolling the time 
loop was limited by the necessary thread synchronizations.  To reduce these 
we doubled the size of the shared memory per block combined with an unroll 
by of time loop by 2.  By using different buffers for even and odd time, it 
made it possible to read from shared memory and to write to shared memory  
without thread synchronization in between.  The result is a halving of the 
number of synchronization points, and a significant speedup.

Textures By binding the input array to a 2D texture, with dimensions [Time] 
x [Frequency.Antenna.Polarization], the texture unit performs the global 
memory indexing for free.  This brought an additional advantage of reducing 
register pressure which had increased from the addition of time loop 
unrolling. 

RESULTS AND CONCLUSIONS

In this work we have demonstrated that cross-correlation can be very 
efficiently performed using the Fermi architecture.  Key to achieving this 
high performance was a multi-level tiling strategy which required using 
shared memory tiling to minimize global memory accesses, and register 
tiling to hide shared memory accesses.  We were able to achieve 78% of peak 
performance, which on the GeForce GTX 480 corresponds to 1040 GFLOPS. 
To our knowledge, this is the first time that a non-trivial application has 
achieved this performance.  With a sustained performance of 1 TFLOP, it 
would require 128 GPUs to replace the current FPGA correlator for the 
MWA.
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INITIAL STRATEGY

Thread Indexing Each block of threads, of size BxB acts on a BxB block of 
the matrix, i.e., one thread per antenna pair.  Since only the lower triangular 
half of the output matrix is required, the grid dimensions are set to

where the first grid dimension is used for triangular matrix index, and the 
second for the trivial frequency index.   The global matrix coordinates (i,j) 
can then be obtained from 

Naïve Implementation  Each thread iterates through the time dimension, 
accumulating the result for a fixed antenna pair in registers and is responsible 
for loading all of the data required.  This equates to two float4 loads: 1 row 
value and 1 column value, each consisting of 2 polarizations x 2 from 
complexity.  The time average is over many thousands of samples, and so the 
cost of writing the matrix elements is negligible.  The resulting arithmetic 
complexity of 1 flop per byte means the naïve implementation is bandwidth 
bound (which is around 8 on a GTX 480), though the presence of L1 and L2 
cache does help, achieving 390 GFLOPS.

TILING
Shared memory tiling  To increase the arithmetic intensity, a shared 
memory tiling strategy was employed.  With 64 threads per thread block, it is 
natural to use 8x8 tiling.  This requires loading both a row and a column of 
32 numbers (tile size x polarization x complexity).  In this scheme, the first 
warp would load the row vector, and the second warp reads in the column 
vector.  Each thread in a block only reads in a single float, and full coalescing 
is obtained.  When combined with the fined-tuning optimizations this raised 
performance to 560 GFLOPS.

Register tiling Although shared memory has much faster bandwidth and 
lower latency than device memory, it is no substitute for registers.  Using a 
2x2 register tiling (the maximum achievable with 64 registers) increases the 
arithmetic intensity on the shared memory sourced loads to 4 which is 
enough to hide this bottleneck.  When combining the tiling strategies, the  
shared memory tile size is quadrupled to 16x16, and each thread now loads a 
float2 from device memory.  Performance is increased to 960 Gflops, and 
over the magical 1 TFLOP with the addition loading through the texture unit.
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