
Mint: An OpenMP to CUDA Translator
Didem Unat

Computer Science and Engineering

Motivation
• OpenMP
• Mainstream shared memory programming model
• Few pragmas are sufficient to expresses parallelism
• Legacy code

• GPU programming with CUDA
• Pros
• Provides high performance in data parallel applications
• GPUs are cost efficient, supercomputer in a laptop

• Cons
• Requires tuning for the best performance
• Computational scientists are new to memory hierarchy and data management

• Goal
• Generate a high quality CUDA code
• Domain specific optimizations
• 2D and 3D structured grid problems

• Minimal modifications in the original OpenMP source code

Compilation Phases of Mint

Code Transformation Steps

Create AST
Parse OpenMP pragmas

Generate Cuda Code

Cuda Optimizer

Backend

Input file
OpenMP src

Output file
Cuda src

Mint

• Mint
• Interprets and maps OpenMP pragmas into CUDA programming model
• Performs compile-time optimizations
• Drives the device variables for data transfer and issues necessary data copy
operations

• ROSE
• Developed at Lawrance Livermore National Lab.
• An open source compiler framework to build source-to-source compiler
• Mint uses ROSE to parse, translate and unparse OpenMP code

• Domain specific optimizations
• Structured grid problems (finite difference problems)
• Shared memory, register and kernel merge optimizations
• Boundary condition optimizations
• Motivating applications include heart simulations, earthquake simulations

and
geoscience applications

Step 1: Find OpenMP parallel regions and omp for loops

• Find omp parallel regions,
these are candidates for
acceleration on the GPU

• Each omp parallel for in a
parallel region becomes a
CUDA kernel

• Parallel regions are data
regions where data should
be transferred before and
after these regions.

Optimization Steps for
Finite Difference Apps.

Preliminary Results

ACKNOWLEDGMENTS

• Omp for loop body becomes the
kernel body

• Replace the loop with a kernel
launch

• Ignore the scheduling parameters
within OpenMP

Step 2: Replace each omp for
loop with a kernel launch

Step 3: Identify necessary
 data transfers

• Find the function arguments both
scalar and vector variables

• Vector variables have to be
allocated and transferred to the
device

• Perform array range analysis and
pointer analysis to find the size of an
array

• Replace for statements with if
statements to check the array
boundaries

• Calculate the assignment of a
thread

• Single loop becomes 1D thread
block

• Nested loops become 2D, 3D
thread blocks

Step 4: Modify Kernel Body

MINT

Mint performs domain specific optimizations on finite
difference
applications

• Shared Memory Optimizations: Finite difference kernels
uses stencils (nearest neighbors) to compute PDEs. Their
data are good candidates to place in shared memory.

• isStencilLoop() : checks if the loop performs stencil
computation. If it does, it returns the grid/array to be
placed in share memory.

• Register Optimizations: Frequently accessed variables
can be placed in registers to reduce the cost global memory
accesses.
• Mint counts the number of references to an array and

finds a list of candidate variables to store in registers.

• Kernel Fuse (for Boundary Conditions): Boundary
conditions may be in a separate loop in OpenMP
implementation. However, under CUDA they can be merged
into in a single kernel with a block synchronization. This
reduces kernel launch and global memory access cost.

• Results for a heart simulation containing 1 PDE and 2
ODEs on Tesla C1060.
• Uses mirror boundary conditions
• Kernel-fuse optimization merges boundary condition loops
and the main computation loop into a single kernel

Didem Unat was supported by
a Center of Excellence grant from the Norwegian Research Council to the
Center for Biomedical Computing at the Simula Research Laboratory.}

