
GStream: A General-Purpose Data Streaming Framework on
GPU Clusters

Yongpeng Zhang & Frank Mueller

Motivation

  GPU’s viability to operate on general streaming data is still unknown.
 Data streaming processing and data-parallelism are sometimes conflicting

—  Streaming processing favors smaller response time – less
—  Massive data-parallelism tends to increase response time
—  Existing streaming abstraction fails to consider this trade-off

Gstream APIs Experimental Results

  GPU cluster
—  Handle different layers of memory

Gstream: System Model
  Filter

—  Encapsulate data processing; consume and/or produce data
—  Main body of a filter execution is generalized into three-step pattern:

•  Suppose input tuples arrive at a steady
speed of N/T
•  GE(i): GPU execution time for batch
size i
•  D(i): Response time for batch size i

The larger the batch size, the worse
the average and maximum
response time

void Filter::run() {
 start();
 while (!isDone())
 kernel();
 finish();
}

  Channel
—  One-way Links b/w filters
—  Two types of channels:

—  p2p channel: links a predecessor and a successor filter
—  group channel: links array of filters, well-defined communication pattern
(broadcast, reduce, all-to-all etc.)

  Operator “|” to concatenate filters using channel
—  Concise, yet powerful to express complicated filter mapping

StreamSystem APIs:
void addFilter(FilterBase *filter)
void run();
Filter Functions to be Overridden:
void kernel() * (GPU kernels are launched inside)
void start() + (empty by default)
void finish() + (empty by default)
int getMinDegree(int portId)
int getMaxDegree(int portId)
*: must overridden; +: has default behavior

Channel Push APIs:
void reserve (StreamChannelBuffer &buffer, int size)
void reserve_finalize (int size)

Channel Pop APIs:
void pop (StreamChannelBuffer &buffer, int min, int max)
void pop_finalize (int size)

Case Study: Finite Impulse Response Filter

Design Goal
  Scalability

—  No restriction on the size of the GPU cluster
  Transparency

—  Task scheduling and GPU/host memory management handled by run-time .
  Extendability

—  Easy to extend to customized need
  Programmability

—  Syntax should be concise and provide compile time type-checking
  Flexibility

—  Easy to switch b/w CPU and GPU execution
—  Allows fast prototyping and debugging on CPU

  Reusability
—  GPU kernels more expensive to develop
—  Reusing existing CUDA libraries a plus

int main() {
 StreamSystem ss;
 RandomFilter<float>rf;
 FirFilter<float, 100> firf; // a FIR
filter with degree m = 100
 OutputFilter<float> pf;

 /* add filters to system */
 ss.addFilter(&rf);
 ss.addFilter(&firf);
 ss.addFilter(&pf);

 /* construct the channel*/
 rf | firf | pf;

 /* ready to run */
 ss.run();
 return 0;
}

template<class T, int m>
class FifFilter: public Filter<typelist1<T>,
typelist1<T> > {
public:
virtual void start() {
 … /* setup coefficients array k[m] */
}
virtual int getMinDegreee(int portId) {
 return m;
}
virtual void kernel(){
 StreamChannelBuffer<T> input;
 StreamChannelBuffer<T> output;
 int batch = inputPort[0]->pop(&input,
getMinDegree(0), getMaxDegree(0));
 if (batch != -1) {
 outputPort[0]->reserve(&output, batch –m
+ 1);
 … /* computation, omitted */
 /* output ready, finalize the reserve*/
 outputPort[0]->reserve_finalize();
 /* input port only consumes batch –m +1
 inputPort[0]->pop_finalize(batch-m+1);
 } else { /* terminate condition */
 setDone();
 }
Private:
 float k[m];
}
};

  FIR: degree 100
  Matrix Multiply: matrix size
512 X 512
  FFT: 2D 512 X 512
  Integer Sort (IS)
  LAMMPS benchmark

  All running on a GPU cluster
with 16 nodes
  Speedups up to 30X over CPU
cluster with the same # of nodes

  Linear Road Benchmark: Original designed to provide scalable and fair
benchmark for Stream Data Management Systems (SDMS)
  Performance measured by L-rating (# of express ways supported w/o
breaking response time constraint)
  GStream achieve L= 40, in contrast to L=2.5 in Aurora and SPC

Conclusion and Future Work
  GStream is a general-purpose, scalable data streaming framework designed
for GPU clusters
  We present a novel and concise, yet powerful streaming abstraction
amenable to GPUs
  Gstream is easy to use, applicable to a variety of domains not constrained
to traditional streaming problems
  Our future work includes:

  Expand GStream to NAS benchmarks, making GPU cluster an attractive
platform for high-performance computing

