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A Paradigm for Divide and Conquer Algorithms 
on the GPU and its Application to the Quickhull Algorithm

We present a divide and conquer paradigm for data-
parallel architectures and use it to implement the 

Quickhull algorithm to find convex hulls. Divide and 
conquer is a powerful concept in programming which 

divides data into smaller subproblems (the divide stage), 
which can then be recursively solved (the conquer stage) 
quickly. However in the absence of recursion support on 
current GPUs, it is unclear how to map such algorithms 

onto the GPU efficiently.

Our approach is to think of each subproblem as 
contiguous segments within the input data. We 

implement the divide stage by permuting the input data 
so that data for each subproblem are laid out 

contiguously in non-overlapping segments. Thus 
recursive function calls are replaced by a single kernel 
call which does the permutation on the whole input.

flagPermute takes in an array of flags (i.e. IDs) and 
permutes data around so that flags of the same value 
are contiguous.  This is the key step in permuting the 

data of our paradigm.  We developed two 
flagPermute operations: one which operates on 2 flag 

values and one which operates on 3.   Each extra 
value for the operation requires more scan operations 

to compute the final permutation locations.

Compact takes in an array of booleans and 
discards data which are marked as false by the 

boolean array.  Since compact only takes in 
boolean values, no extra work is needed when 
scaling up with dimensonality (i.e. the number 

of scan operations are constant).

We compare our results against two widely-known 
computational geometry programs: qhull and hull.  
Our test data is a set of n uniform points in space 
and we measure the amount of time in ms it takes 
for each program to compute the convex hull.  We 
performed two sets of tests for the 2D and 3D case 
respectively.

Our tests were run on a NVIDIA GeForce 260 core 
216 with  896 MB of VRAM and on an Intel Quad-
Core Q6600 Processor.  We used  CUDPP 1.1 and 
CUDA 2.2 in our GPU kernels.  

Rather than doing a traditional divide and conquer 
approach, which while possible would be greatly 

inefficient, we go for a segment and conquer 
paradigm.  Rather than scattering the data up into 
individual arrays, we keep the data in their original 

array, but permute them so that  similar data end up 
consecutively.   

The whole array is then given segment flags so that 
our kernels know to operate on each segment 

without data overflowing into other segments.  Our 
operations are done using scan and segmented scan.

Left: Traditional divide and conquer methods split up data into separate arrays and 

recursively run an algorithm on the sub-arrays until the problem is solved.  While 

this makes sense on CPUs, it is very hard to map efficiently onto GPUs.  

Right: Our solution of segment and conquer.  Keep the data in its original array, but 

permute them so that similar data is grouped together and rework the GPU kernels 

so that they can operate in segments.  We define each similar group of data in the 

array as a segment.

We apply our paradigm to the Quickhull algorithm of finding convex hulls to show its robustness in traditional divide and conquer algorithms.  

Quickhull shares a similar structure to its more popular cousin Quicksort (hence the name) but with a major difference: Quickhull throws away points 

as it goes along that it has deemed not to be in the final solution set.  This is a very similar strategy to other divide and conquer algorithms such as 

median finding, and to capture this action in our paradigm we use the Compact operation (described above). 

Quickhull flowchart:

•Given a set of points, find the extrema (min and max) 

on the x axis.  This is done with a modified max-

segmented scan.

•Use the extrema to form a line, and compute the 

signed distance from each point to the line. 

•Split the set of points into two segments: those that 

are above the line and those below.  

•Take the max and the min of the distances, and use 

these two points to form a triangle with the line.  

•Do a test to see which points lie within the triangle.  If 

the point is in the triangle, it cannot be on the convex 

hull, so it is thrown away.

•With the remaining points, figure out which triangle 

edge is closest each point.  Group the points together 

in the array.

•Now that there are new segments, compute the 

distance from each point to the line again.  

•Repeat from finding the max and min distances 

onward until all points are determined to be either on 

the hull or inside it.

Abstract

Green = Hull Points
Gray = Non hull points
Colored = To be determined

These points lie inside the 
triangle, and thus cannot be part 
of the convex hull.  Thrown away 
with Compact

These points are red because 
they are going to test their 
distance to the closest edge of 
the current hull, which is the red 
line.  Grouped with flagPermute

Advantages:
•Very fast (see Results)
•Can efficiently handle 2D and 3D convex 
hull.
•Paradigm can be applied to other divide 
and conquer algorithms, such as median 
finding.

Disadvantages:
•Heavy bookkeeping.
•Due to heavy bookkeeping, heavy on 
memory.
•Still requires data transfer to CPU for 
control flow.
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