
Stanley Tzeng and John D. Owens
University of California, Davis

A Paradigm for Divide and Conquer Algorithms
on the GPU and its Application to the Quickhull Algorithm

We present a divide and conquer paradigm for data-
parallel architectures and use it to implement the

Quickhull algorithm to find convex hulls. Divide and
conquer is a powerful concept in programming which

divides data into smaller subproblems (the divide stage),
which can then be recursively solved (the conquer stage)
quickly. However in the absence of recursion support on
current GPUs, it is unclear how to map such algorithms

onto the GPU efficiently.

Our approach is to think of each subproblem as
contiguous segments within the input data. We

implement the divide stage by permuting the input data
so that data for each subproblem are laid out

contiguously in non-overlapping segments. Thus
recursive function calls are replaced by a single kernel
call which does the permutation on the whole input.

flagPermute takes in an array of flags (i.e. IDs) and
permutes data around so that flags of the same value
are contiguous. This is the key step in permuting the

data of our paradigm. We developed two
flagPermute operations: one which operates on 2 flag

values and one which operates on 3. Each extra
value for the operation requires more scan operations

to compute the final permutation locations.

Compact takes in an array of booleans and
discards data which are marked as false by the

boolean array. Since compact only takes in
boolean values, no extra work is needed when
scaling up with dimensonality (i.e. the number

of scan operations are constant).

We compare our results against two widely-known
computational geometry programs: qhull and hull.
Our test data is a set of n uniform points in space
and we measure the amount of time in ms it takes
for each program to compute the convex hull. We
performed two sets of tests for the 2D and 3D case
respectively.

Our tests were run on a NVIDIA GeForce 260 core
216 with 896 MB of VRAM and on an Intel Quad-
Core Q6600 Processor. We used CUDPP 1.1 and
CUDA 2.2 in our GPU kernels.

Rather than doing a traditional divide and conquer
approach, which while possible would be greatly

inefficient, we go for a segment and conquer
paradigm. Rather than scattering the data up into
individual arrays, we keep the data in their original

array, but permute them so that similar data end up
consecutively.

The whole array is then given segment flags so that
our kernels know to operate on each segment

without data overflowing into other segments. Our
operations are done using scan and segmented scan.

Left: Traditional divide and conquer methods split up data into separate arrays and

recursively run an algorithm on the sub-arrays until the problem is solved. While

this makes sense on CPUs, it is very hard to map efficiently onto GPUs.

Right: Our solution of segment and conquer. Keep the data in its original array, but

permute them so that similar data is grouped together and rework the GPU kernels

so that they can operate in segments. We define each similar group of data in the

array as a segment.

We apply our paradigm to the Quickhull algorithm of finding convex hulls to show its robustness in traditional divide and conquer algorithms.

Quickhull shares a similar structure to its more popular cousin Quicksort (hence the name) but with a major difference: Quickhull throws away points

as it goes along that it has deemed not to be in the final solution set. This is a very similar strategy to other divide and conquer algorithms such as

median finding, and to capture this action in our paradigm we use the Compact operation (described above).

Quickhull flowchart:

•Given a set of points, find the extrema (min and max)

on the x axis. This is done with a modified max-

segmented scan.

•Use the extrema to form a line, and compute the

signed distance from each point to the line.

•Split the set of points into two segments: those that

are above the line and those below.

•Take the max and the min of the distances, and use

these two points to form a triangle with the line.

•Do a test to see which points lie within the triangle. If

the point is in the triangle, it cannot be on the convex

hull, so it is thrown away.

•With the remaining points, figure out which triangle

edge is closest each point. Group the points together

in the array.

•Now that there are new segments, compute the

distance from each point to the line again.

•Repeat from finding the max and min distances

onward until all points are determined to be either on

the hull or inside it.

Abstract

Green = Hull Points
Gray = Non hull points
Colored = To be determined

These points lie inside the
triangle, and thus cannot be part
of the convex hull. Thrown away
with Compact

These points are red because
they are going to test their
distance to the closest edge of
the current hull, which is the red
line. Grouped with flagPermute

Advantages:
•Very fast (see Results)
•Can efficiently handle 2D and 3D convex
hull.
•Paradigm can be applied to other divide
and conquer algorithms, such as median
finding.

Disadvantages:
•Heavy bookkeeping.
•Due to heavy bookkeeping, heavy on
memory.
•Still requires data transfer to CPU for
control flow.

Major Operations

The Big Idea

flagPermute Compact

Quickhull

Results

C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The

quickhull algorithm for convex hulls. ACM Transactions on

Mathematical Software, 22:469–483, 1996.

Guy Blelloch. Vector Models for Data-Parallel Computing. MIT

Press, 1990.

Mark Harris, Shubhabrata Sengupta, and John D. Owens. "Parallel

Prefix Sum (Scan) with CUDA". In Hubert Nguyen, editor, GPU

Gems 3, chapter 39, pages 851–876. Addison Wesley, August

2007.

Qhull code for convex hull, delaunay triangulation, voronoi diagram,

and halfspace intersection about a point. http://www.qhull.org/,

2003.

References

