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Project Model equations and their solution

We are in the process of porting our parallel level-set based two-phase

solver for the three-dimensional Navier-Stokes equations to the GPU.

NaSt3DGPF – A parallel two-phase solver for computational fluid dynamics

NaSt3DGPF has been developed at the Institute for Numerical Simulation [1],[2],[3]. These are

some of its applications:

Flow through and around

hydraulic constructions

High quality fluid animations Flow through porous media

It has the following features:

• Finite difference discretization of the Navier-Stokes equations on a uniform staggered grid

using Chorin’s projection approach

• Simulation of two-phase flows (e.g. air and water) by the well-known level set method

• Computation of surface tension effects (via continuum surface force)

• Simulation of turbulence by a large-eddy approach

• Parallelization using the domain decomposition approach of Schwarz (implemented via MPI)

Current progress

A multi-GPU double-precision solver for the pressure Poisson equation based on the Jacobi

preconditioned conjugate gradient method has been implemented using CUDA and MPI.

The two-phase Navier-Stokes equations

The Navier-Stokes equations serve as model for fluid behavior.

δ

δt
~u + (~u · ∇)~u +

1

ρ
∇p =

µ

ρ
∆~u + ~g (momentum equation)

∇ · ~u = 0 (continuity equation)

• computational domain Ω ⊂ 3

• time t ∈ [0, tend]

• velocity ~u ∈ Ω × [0, tend] →
3

• pressure p ∈ Ω × [0, tend] →

• dynamic viscosity µ ∈ Ω × [0, tend] →

• density ρ ∈ Ω × [0, tend] →

• constant volume force ~g ∈ 3

• initial conditions

~u(·, 0) = ~u0(·), p(·, 0) = p0(·)

• boundary conditions

Two phases (e.g. air and water) are distinguished by a level set function φ.

Definition:

φ : Ω × [0, tend] →

|∇φ| = 1

Free surface / water surface:

Γf (t) = {~x ∈ Ω| φ(~x, t) = 0}

Ω1: φ > 0

Ω2: φ < 0

Ω = Ω1 ∪ Ω2 ∪ Γf

The domain-dependent density and viscosity is thus given by

ρ(φ) = ρ2 + (ρ1 − ρ2) H(φ)

µ(φ) = µ2 + (µ1 − µ2) H(φ)
with H = (φ)
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.

Chorin’s projection approach

For each time step n compute a new time step n + 1 by

1. calculating an intermediate velocity field ~u∗

~u∗ − ~un

δt
= −(~un · ∇)~un +

µ

ρ
∆~un + ~g ,

2. solving the Poisson equation for the pressure pn+1

∇ · (
1

ρ
∇pn+1) = ∇ ·

~u∗

δt
,

3. applying a pressure correction to ~u∗

~un+1 = ~u∗ −
δt

ρ
∇p .

The solution of the Poisson equation dominates the overall
simulation time

• Discretization of the pressure Poisson equation results in a very large, but sparse linear system:

Ax = b with #unknowns ≡ #grid points

• Iterative solvers for systems of linear equations take full advantage of sparsity

⇒ iterative linear solvers are used to solve the pressure Poisson equation

• Non-constant density ρ in a two-phase fluid simulation leads to large matrix condition number

⇒ a conjugate gradient solver with Jacobi preconditioner is necessary

Implementation

The preconditioned conjugate
gradient solver for linear systems

The linear system Ax = b is solved iteratively to a given

threshold ǫ by the following algorithm:

Algorithm conjugateGradient(A, b, ǫ)

init x0 ∈ n

r0 = b − Ax0

q0 = B−1r0

p0 = q0

for k = 0, 1, ...

do



































































ak =
rT

k
qk

pT

k
Apk

xk+1 = xk + akpk

rk+1 = rk − akApk

if (rk+1 < ǫ)

then return (xk+1)

qk+1 = B−1rk+1

bk =
rT

k+1qk+1

rT

k
qk

pk+1 = qk+1 + bkpk

Matrix B is given by

Bij =

{

Aii if i = j

0 else

for a Jacobi preconditioned conjugate gradient solver.

Multi-GPU parallelized conjugate gradient solver

Multi-GPU parallelization is performed according to the domain decomposition

method of Schwarz. → Each GPU holds one part of the domain Ω.

Data exchange necessary at boundary cells for matrix-vector and inner products.

Main challenge:

Hiding time needed for data transfers by a well-chosen parallelization.

Our solution:

CUDA Streams parallelize data transfers and expensive matrix-vector products.1

1available on devices with “concurrent copy and execution” capability

Algorithm for combined data transfer
and matrix-vector product

Stream 1

Matrix-vector product on inner cells

Ax

Stream 2

Exchange boundary data

(→ A fast method for boundary

data exchange)

Results

Stream 0

Matrix-vector product on boundary cells

Ax

The usage of MPI allows our multi-GPU solver to scale

on large distributed memory clusters

A fast method for boundary data
exchange

The fast boundary data exchange is performed using a buffer:

1. Transfer boundary data

on GPU

buffer

on GPU

2. Transfer buffer

buffer

on GPU

buffer

CPU RAM

3. Data exchange via MPI

4. Transfer buffer

buffer

CPU RAM

buffer

on GPU

5. Transfer boundary data

on GPU

buffer

on GPU

Performance measurements Outlook

Benchmarking problem

A large air bubble rising in water

Simulation properties

• Water box size: 0.2 cm × 0.2 cm × 0.2 cm (0.2 cm ≈ 0.58 in)

• Bubble radius: 0.03 cm (≈ 0.087 in)

• Volume forces: gravity ~g = (0,−9.81, 0)t m
s2

Visualization of the simulation results (time: 0.0 s – 0.34 s)

Results for the conjugate gradient solver

Speedup with growing problem sizes
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Speedup using multiple GPUs
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Results for the whole fluid solver

Speedup using multiple GPUs
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Benchmarking platform

NVIDIA Tesla S1070 connected to two workstations with

Intel Core 2 Duo CPU (E8500/E7200) communicating

over gigabit Ethernet

Time measurements

• gettimeofday command used

• during first 80 time steps

• 1000 CG iterations per time step

• including time necessary for data transfers

Porting further parts of the solver

• Currently: Port of the time consuming level set reinitialization

• Later: Port of the advection scheme to get optimal overall speedup

• Finally: Every computation ported to the GPU

Improvements in scalability

• Investigation of the impact of different network connections on scalability

• Benchmarking different host systems to get optimal GPU speed

• Performance measurements on larger distributed memory clusters
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