

Towards a multi-GPU solver for the three-dimensional two-phase incompressible Navier-Stokes equations

Michael Griebel, Peter Zaspel

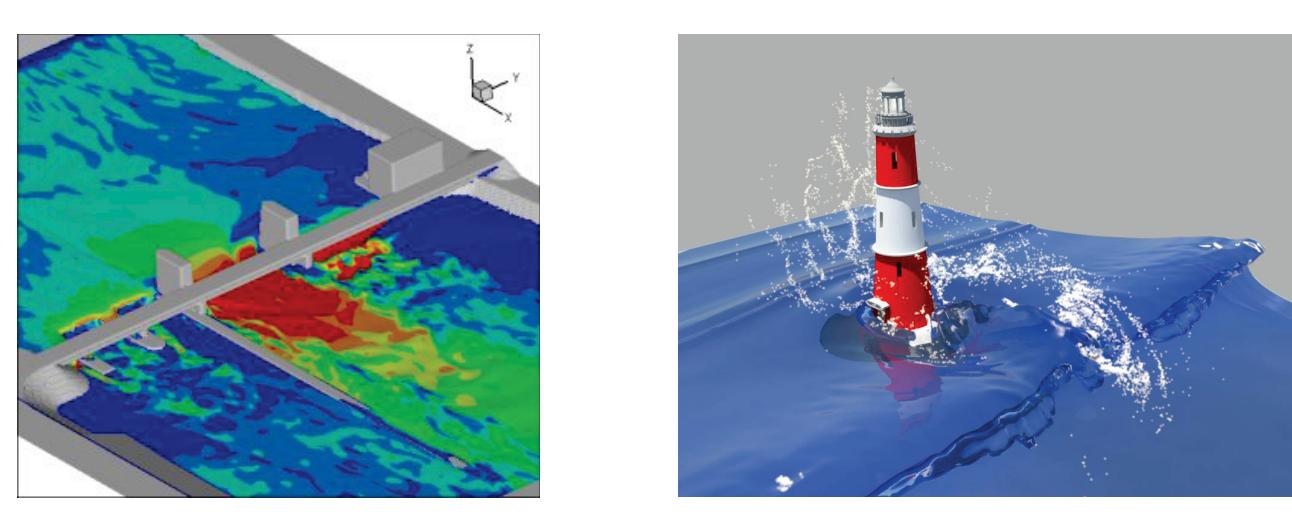
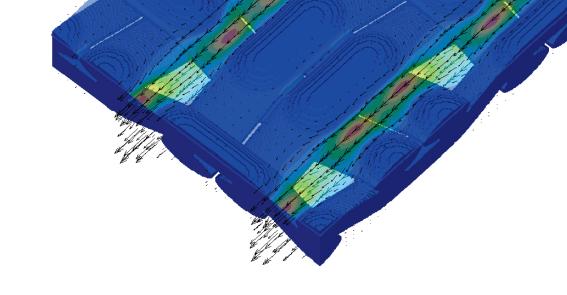
Institute for Numerical Simulation
Rheinische Friedrich-Wilhelms-Universität Bonn

Project

We are in the process of porting our parallel level-set based two-phase solver for the three-dimensional Navier-Stokes equations to the GPU.

NaSt3DGPF – A parallel two-phase solver for computational fluid dynamics

NaSt3DGPF has been developed at the Institute for Numerical Simulation [1],[2],[3]. These are some of its applications:



Flow through and around hydraulic constructions

High quality fluid animations

Flow through porous media

It has the following features:

- Finite difference discretization of the Navier-Stokes equations on a uniform staggered grid using Chorin's projection approach
- Simulation of two-phase flows (e.g. air and water) by the well-known *level set method*
- Computation of surface tension effects (via continuum surface force)
- Simulation of turbulence by a large-eddy approach
- Parallelization using the domain decomposition approach of Schwarz (implemented via MPI)

Current progress

A multi-GPU double-precision solver for the pressure Poisson equation based on the Jacobi preconditioned conjugate gradient method has been implemented using CUDA and MPI.

Model equations and their solution

The two-phase Navier-Stokes equations

The Navier-Stokes equations serve as model for fluid behavior.

$$\frac{\delta}{\delta t} \vec{u} + (\vec{u} \cdot \nabla) \vec{u} + \frac{1}{\rho} \nabla p = \frac{\mu}{\rho} \Delta \vec{u} + \vec{g} \quad (\text{momentum equation})$$

$$\nabla \cdot \vec{u} = 0 \quad (\text{continuity equation})$$

- computational domain $\Omega \subset \mathbb{R}^3$
- time $t \in [0, t_{end}]$
- velocity $\vec{u} \in \Omega \times [0, t_{end}] \rightarrow \mathbb{R}^3$
- pressure $p \in \Omega \times [0, t_{end}] \rightarrow \mathbb{R}$
- dynamic viscosity $\mu \in \Omega \times [0, t_{end}] \rightarrow \mathbb{R}$
- density $\rho \in \Omega \times [0, t_{end}] \rightarrow \mathbb{R}$
- constant volume force $\vec{g} \in \mathbb{R}^3$
- initial conditions $\vec{u}(\cdot, 0) = \vec{u}_0(\cdot), p(\cdot, 0) = p_0(\cdot)$
- boundary conditions

Two phases (e.g. air and water) are distinguished by a **level set function** ϕ .

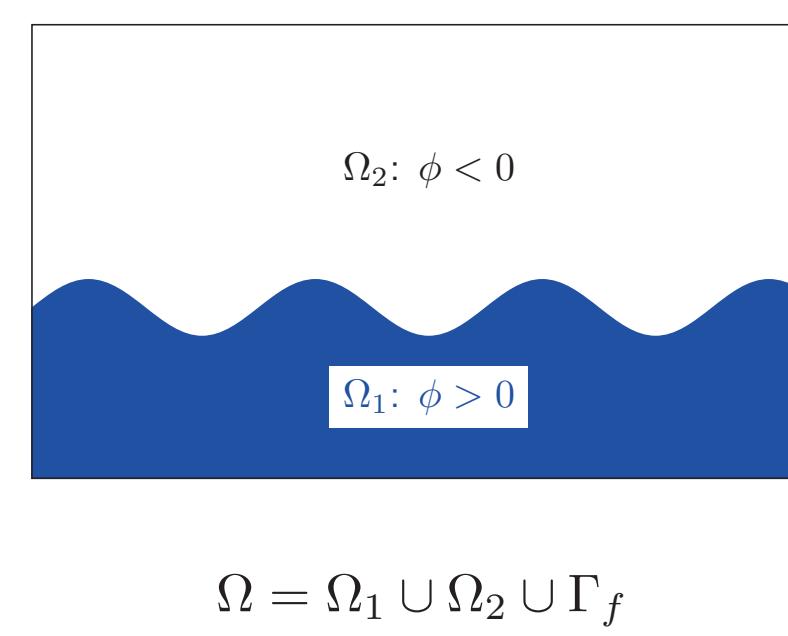
Definition:

$$\phi : \Omega \times [0, t_{end}] \rightarrow \mathbb{R}$$

$$|\nabla \phi| = 1$$

Free surface / water surface:

$$\Gamma_f(t) = \{\vec{x} \in \Omega \mid \phi(\vec{x}, t) = 0\}$$



$$\Omega = \Omega_1 \cup \Omega_2 \cup \Gamma_f$$

The domain-dependent density and viscosity is thus given by

$$\rho(\phi) = \rho_2 + (\rho_1 - \rho_2) H(\phi) \quad \text{with} \quad H(\phi) = \begin{cases} 0 & \text{if } \phi < 0 \\ \frac{1}{2} & \text{if } \phi = 0 \\ 1 & \text{if } \phi > 0 \end{cases}$$

$$\mu(\phi) = \mu_2 + (\mu_1 - \mu_2) H(\phi)$$

Chorin's projection approach

For each time step n compute a new time step $n + 1$ by

1. calculating an intermediate velocity field \vec{u}^*

$$\frac{\vec{u}^* - \vec{u}^n}{\delta t} = -(\vec{u}^n \cdot \nabla) \vec{u}^n + \frac{\mu}{\rho} \Delta \vec{u}^n + \vec{g},$$

2. solving the Poisson equation for the pressure p^{n+1}

$$\nabla \cdot \left(\frac{1}{\rho} \nabla p^{n+1} \right) = \nabla \cdot \left(\frac{\vec{u}^*}{\delta t} \right),$$

3. applying a pressure correction to \vec{u}^*

$$\vec{u}^{n+1} = \vec{u}^* - \frac{\delta t}{\rho} \nabla p.$$

The solution of the Poisson equation dominates the overall simulation time

- Discretization of the pressure Poisson equation results in a very large, but sparse linear system: $Ax = b$ with $\# \text{unknowns} \equiv \# \text{grid points}$
- Iterative solvers for systems of linear equations take full advantage of sparsity \Rightarrow iterative linear solvers are used to solve the pressure Poisson equation
- Non-constant density ρ in a two-phase fluid simulation leads to large matrix condition number \Rightarrow a conjugate gradient solver with Jacobi preconditioner is necessary

Implementation

The preconditioned conjugate gradient solver for linear systems

The linear system $Ax = b$ is solved iteratively to a given threshold ϵ by the following algorithm:

```
Algorithm CONJUGATEGRADIENT(A, b, ε)
init x₀ ∈ ℝ^n
r₀ = b - Ax₀
q₀ = B⁻¹r₀
p₀ = q₀
for k = 0, 1, ...
  ak = r₀ᵀ q₀ / p₀ᵀ A p₀
  xₖ₊₁ = xₖ + ak pₖ
  rₖ₊₁ = rₖ - ak A pₖ
  if (rₖ₊₁ < ε)
    then return (xₖ₊₁)
  qₖ₊₁ = B⁻¹rₖ₊₁
  bₖ = rₖ₊₁ᵀ qₖ₊₁ / rₖᵀ qₖ
  pₖ₊₁ = qₖ₊₁ + bₖ pₖ

```

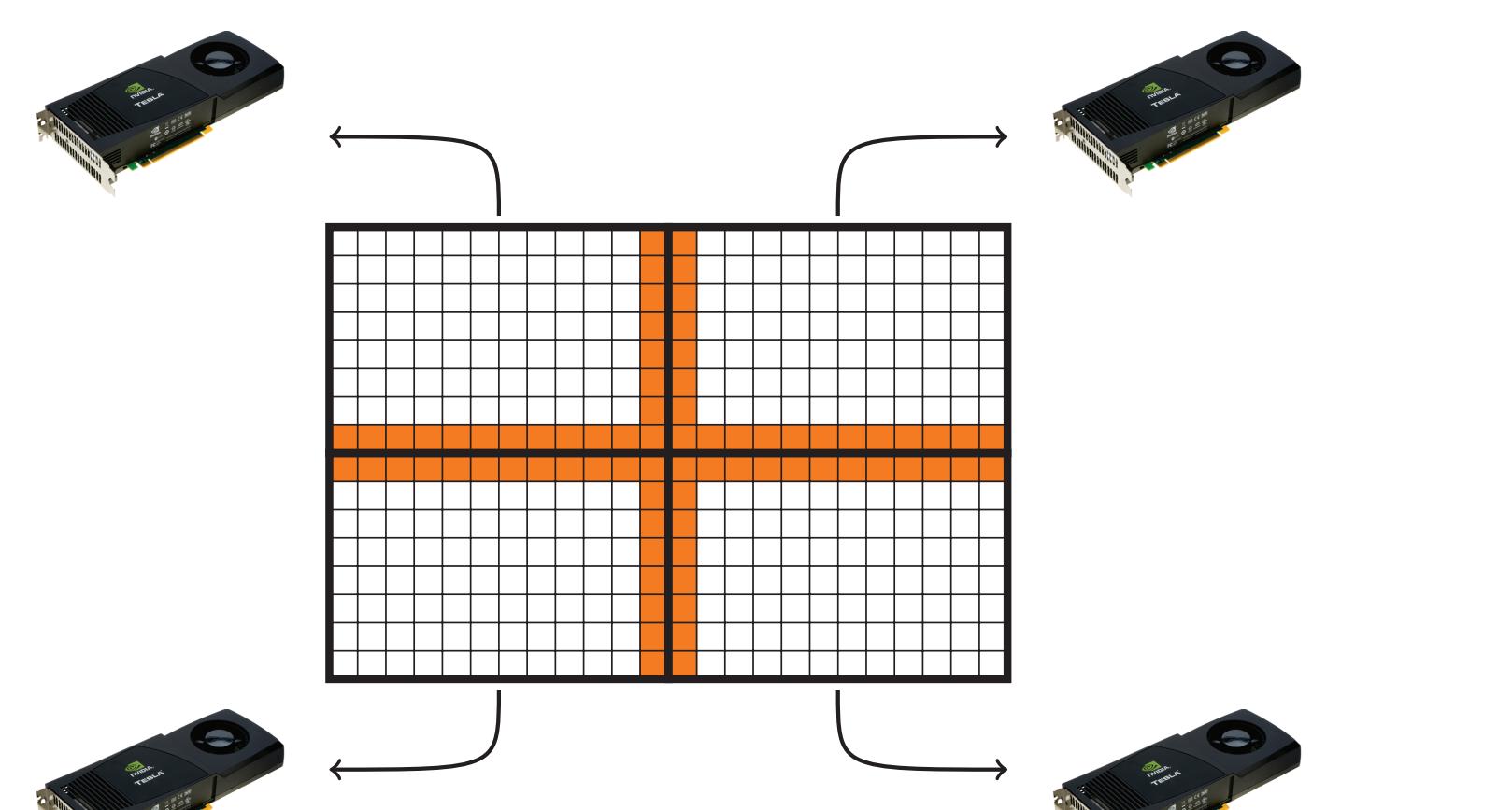
Matrix B is given by

$$B_{ij} = \begin{cases} A_{ii} & \text{if } i = j \\ 0 & \text{else} \end{cases}$$

for a Jacobi preconditioned conjugate gradient solver.

Multi-GPU parallelized conjugate gradient solver

Multi-GPU parallelization is performed according to the domain decomposition method of Schwarz. \rightarrow Each GPU holds one part of the domain Ω .



Data exchange necessary at boundary cells for matrix-vector and inner products.

Main challenge:

Hiding time needed for data transfers by a well-chosen parallelization.

Our solution:

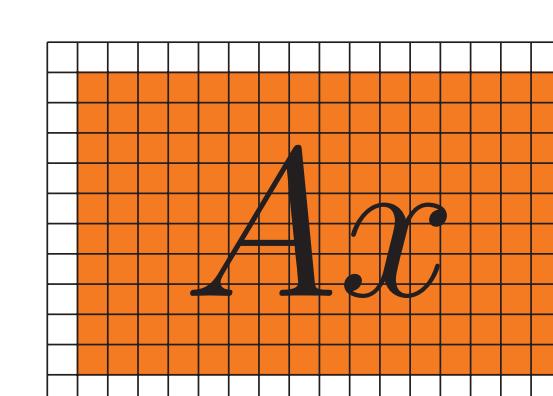
CUDA Streams parallelize data transfers and expensive matrix-vector products.¹

¹available on devices with "concurrent copy and execution" capability

Algorithm for combined data transfer and matrix-vector product

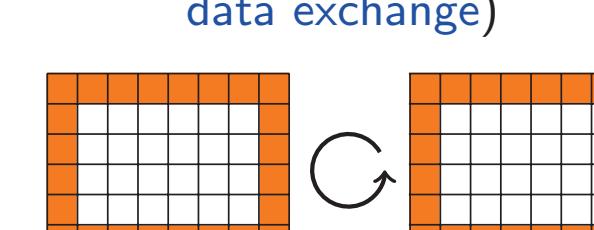
Stream 1

Matrix-vector product on inner cells

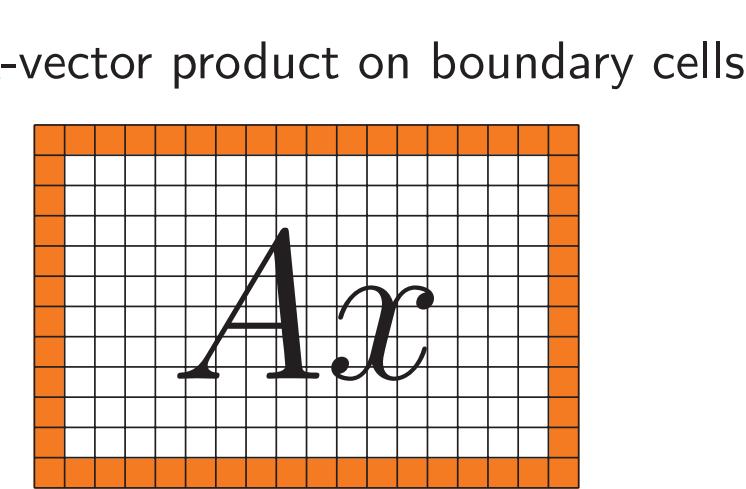


Stream 2

Exchange boundary data
(\rightarrow A fast method for boundary data exchange)



Results

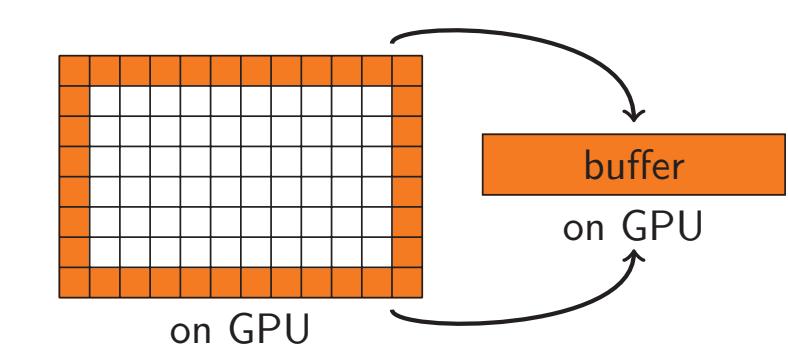


The usage of MPI allows our multi-GPU solver to scale on large distributed memory clusters

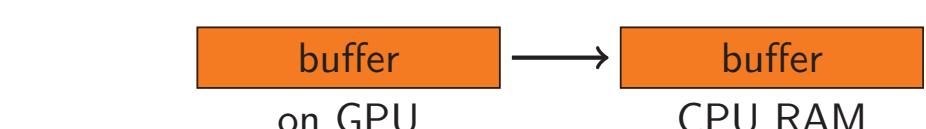
A fast method for boundary data exchange

The fast boundary data exchange is performed using a buffer:

1. Transfer boundary data

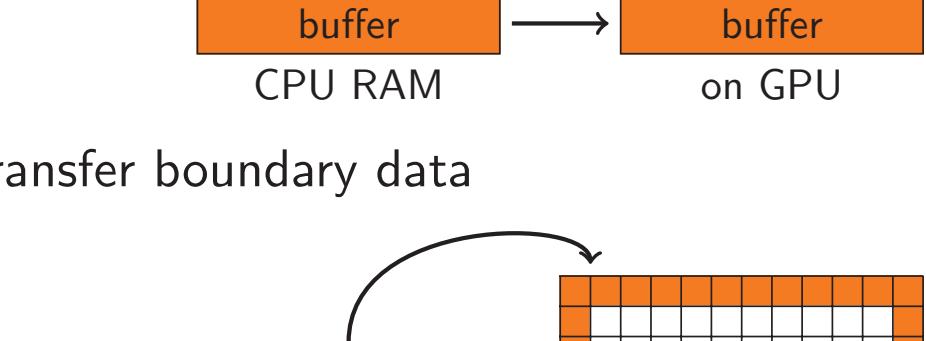


2. Transfer buffer



3. Data exchange via MPI

4. Transfer buffer



5. Transfer boundary data

Performance measurements

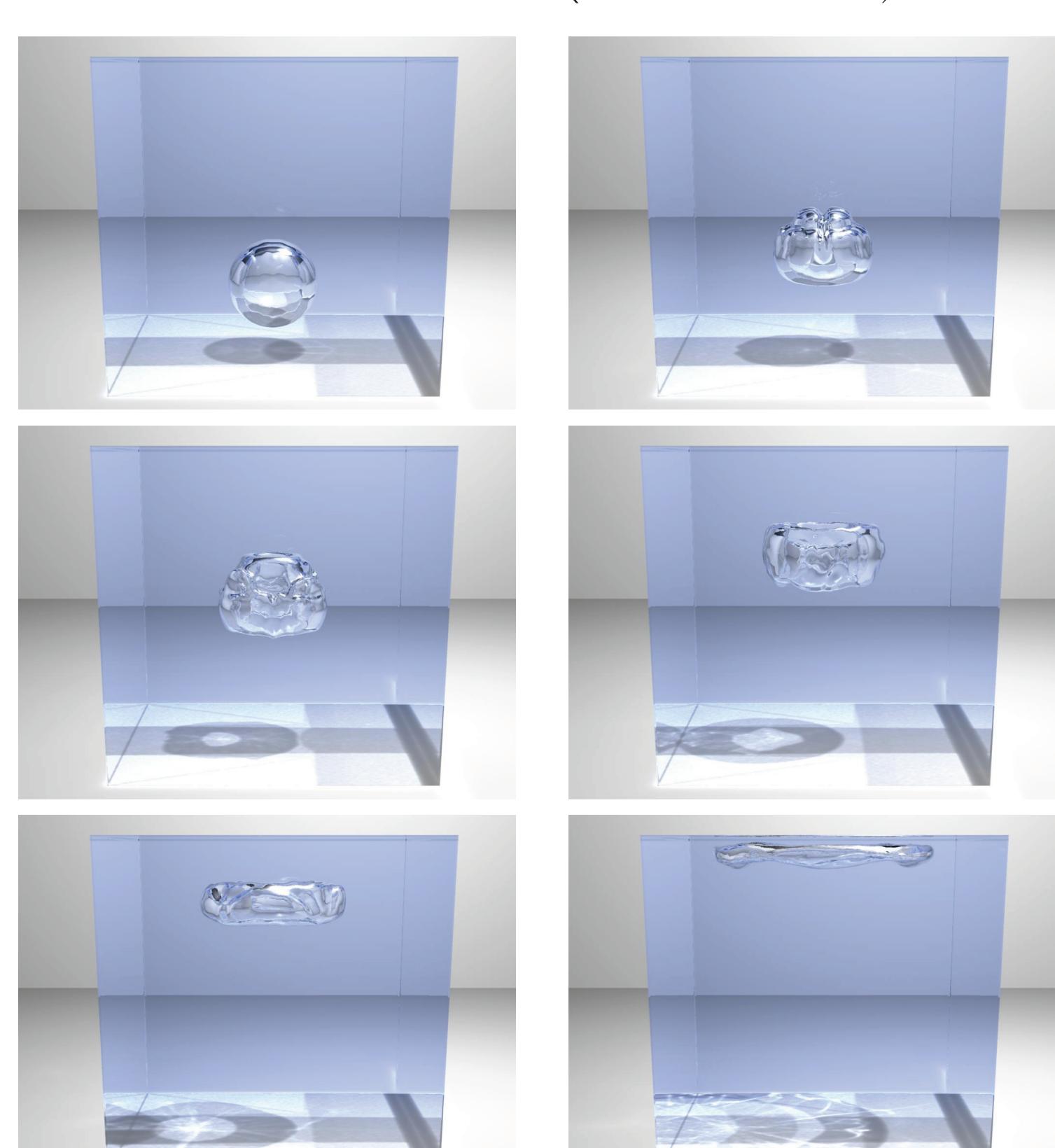
Benchmarking problem

A large air bubble rising in water

Simulation properties

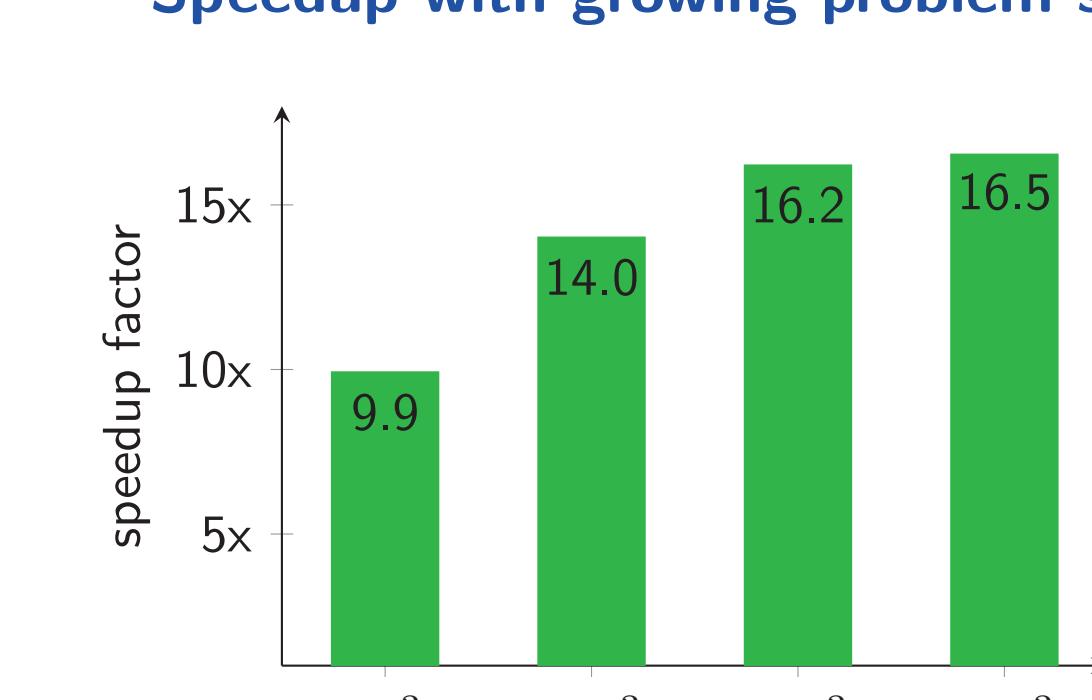
- Water box size: $0.2 \text{ cm} \times 0.2 \text{ cm} \times 0.2 \text{ cm}$ ($0.2 \text{ cm} \approx 0.58 \text{ in}$)
- Bubble radius: 0.03 cm ($\approx 0.087 \text{ in}$)
- Volume forces: gravity $\vec{g} = (0, -9.81, 0)^T \frac{\text{m}}{\text{s}^2}$

Visualization of the simulation results (time: 0.0 s – 0.34 s)

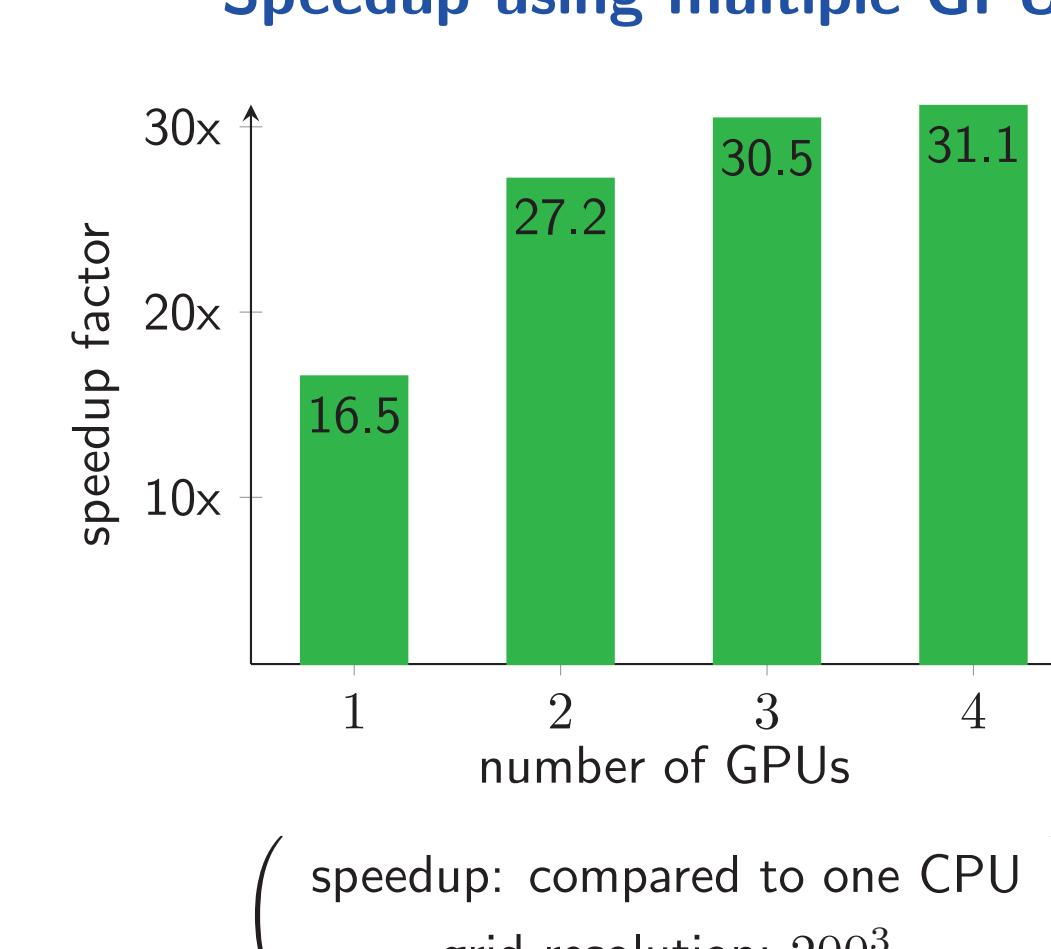


Results for the conjugate gradient solver

Speedup with growing problem sizes

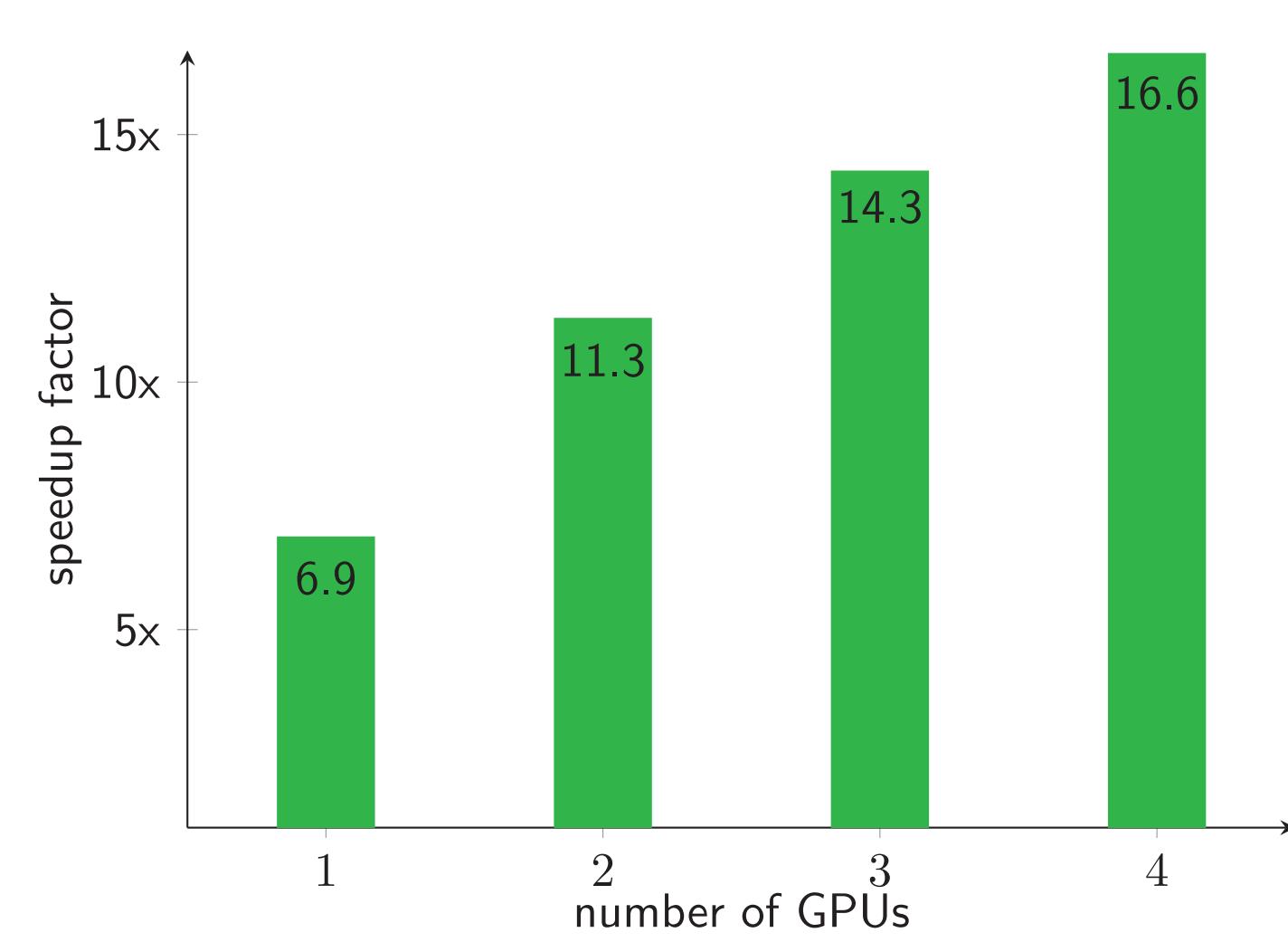


Speedup using multiple GPUs



Results for the whole fluid solver

Speedup using multiple GPUs



Benchmarking platform

NVIDIA Tesla S1070 connected to two workstations with Intel Core 2 Duo CPU (E8500/E7200) communicating over gigabit Ethernet

Time measurements

- `gettimeofday` command used
- during first 80 time steps
- 1000 CG iterations per time step
- including time necessary for data transfers

Outlook

Porting further parts of the solver

- Currently: Port of the time consuming level set reinitialization
- Later: Port of the advection scheme to get optimal overall speedup
- Finally: Every computation ported to the GPU

Improvements in scalability

- Investigation of the impact of different network connections on scalability
- Benchmarking different host systems to get optimal GPU speed
- Performance measurements on larger distributed memory clusters

References

- [1] CROCE, R., M. ENGEL, J. STRYBNY and C. THORENZ: A Parallel 3D Free Surface Navier-Stokes Solver For High Performance Computing at the German Waterways Administration. In The 7th Int. Conf. on Hydroscience and Engineering (ICHE-2006), Philadelphia, USA, September 2006.
- [2] CROCE, R., M. GRIEBEL and M. A. SCHWEITZER: A Parallel Level-Set Approach for Two-Phase Flow Problems with Surface Tension in Three Space Dimensions. Preprint 157, Sonderforschungsbereich 611, University of Bonn, 2004.
- [3] CROCE, R., M. GRIEBEL and M. A. SCHWEITZER: Numerical Simulation of Droplet-Deformation by a Level Set Approach with Surface Tension. Preprint 395, Sonderforschungsbereich 611, University of Bonn, Bonn, Germany, 2008.

NaSt3DGPF project page: <http://www.nast3dgpf.com>

Peter Zaspel (Institute for Numerical Simulation - University of Bonn)
Email: zaspel@ins.uni-bonn.de