Matrix-Matrix Multiplication for BOINC with SciGPU-GEMM

R. G. Edgar,'“ R. Olivares-Amaya,’ L. Vogt,”> M. A. Watson'> & A. Aspuru-Guzik’

The Need for SciGPU-GEMM

Increasing the efficiency and reducing the cost of solar cells are keys
to the increased adoption of solar power. There is a bewildering variety
of candidate materials for solar cell construction, and we are using the
distributed computing power of the BOINC project to guide material se-
lection via quantum chemistry calculations. Many of these calculations
spend a considerable amount of time performing matrix-matrix multiplica-
tions, which are easily accelerated with GPUs with CUBLAS. The pres-
ence of CUDA-capable GPUs on many BOINC client machines opens up
the tantalising prospect of using CUDA acceleration, but there are two
key obstacles:

1. Small device memory on consumer-level GPUs
2. Lack of double precision hardware on the same GPUs

We wrote the SciGPU-GEMM library to bypass these difficulties.

Cleaving GEMMs

Consider the matrix multiplication
C=A-B

We can divide A into a column vector of matrices and B into a row vec-
tor of matrices - we refer to this process as cleaving the matrices. The
matrix C' can then be assembled from the multiplication of each pair of

sub-matrices from A and B.

In SciGPU-GEMM, the matrices are automatically cleft according to the
amount of memory available on the current GPU. Each pair of sub-
matrices is staged through the GPU and multiplied using the CUBLAS
library. The arguments for a call to the matrix cleaver are identical to
those for a standard call to SGEMM or DGEMM. Figure 1 shows how the
cleaver performs on our cluster. When the GPU is limited to using only
16 MiB of RAM, clear ‘steps’ appear in the time taken, corresponding to
points where extra cleaving became necessary.

NVIDIA GPU Technology Conference, San Jose CA

Hnitiative in Innovative Computing, Harvard University,

’School of Engineering and Applied Sciences, Harvard University,
‘Department of Chemistry and Chemical Biology, Harvard University

rgeZ2ll@dseas.harvard.edu

http://scigpu.org/

10000 ¢

1000 F

100 F

10 F

Time (secs)

SGEMM (CPU) —
SGEMM (GPU 16MiB)
SGEMM (GPU 4GiB) =—
DGEMM (CPU) sessmsns
DGEMM (GPU 16MiB)
DGEMM (GPU 4GiB) s

0.1 F

0.01 F ]

0.001 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000

Matrix Size

Figure 1: Performance of the matrix cleaver, as a function of (square)
matrix size. Timings for both single and double precision are shown, for
an Intel 3 GHz ‘Harpertown’ Xeon and an NVIDIA Tesla C1060. For the
Tesla, we show timings where the card was limited to using 16 MiB of
RAM, in addition to using all of its available RAM. For both the single and
double precision cases, this caused cleaving to begin at around a matrix
size of 1024. All timings are averaged over 20 calls.

Heterogeneous Computing with MGEMM

Many of our calculations require intermediate numerical precision: sin-
gle precision is generally sufficient, but double precision is sometimes
required. For such calculations, we have written a mixed-precision matrix
multiply routine for SciGPU-GEMM. This splits the matrices into ‘large’ and
‘'small’ components

O — (Alarge _|_Asmall) . (Blarge 4 Bsmall) _

ABIarge_|_AlargeBsmaH_|_AsmallBsmaljl
CPU GPU
The Asmalipsmal tarm is run in single precision on the GPU (cleaving if
needed). The other two terms are run in double precision on the CPU.
However, each of the ‘large’ matrices should be sparse, cutting the com-
putational complexity significantly. To split the matrices, we define a cut-
off value, 4. If |A;;| > ¢, that element is considered ‘large. We call our
routine MGEMM, for ‘multi-precision general matrix multiply. It operates
similarly to the other ~GEMM routines, but takes ¢ as an extra argument.

Figure 2 shows MGEMM performance on a real quantum chemistry calcu-
lation. There is a clear range of ¢ values where MGEMM IS more accurate
than sGEMM while also outperforming DGEMM on the CPU.

Speedup
Max. Abs. Error o

10 1 ! 25008
.-'. g
. =>
—~~ 8 | = L
S = 1 2e-08 O
= " o
I("DJ ® 3 ® ® ¢ E
) Max. Abs. Error SGEMM O
D . . =
a 6. ¢ 1 15e-08 @
O put
_ o
L =
o . ¢ o - — 1e-08 P
-] A | | 4 10 ¢ =
8 ] a ¥ m = = - 1 ] 16-08 6
2 " 2
® o o"
p) PRPAR L 4 5t o 1 56'09 <
/'. o * 9 |
L
5 0000 et ® ° | 5e-09 =
. 0.015 0.03
O M M M M O
0 0.1 0.2 0.3 0.4 0.5

Double Precision cut-off

Figure 2: Performance of MGEMM, as a function of the cut-off value, 9,
for a pair of matrices (sizes 4485 x 4186 and 4186 x 4485) from a quantum
chemistry calculation of the taxol molecule. Left ordinate: Time taken
for various GEMM calls (Intel 3 GHz ‘Harpertown’ against NVIDIA Tesla
C1060). Right ordinate: Maximum absolute error in a single element.
The subplot magnifies small 6 values, showing where MGEMM offers im-
proved performance.

Conclusion

The sciGpPU GEMM library solves two problems associated with using
GPUs for matrix-matrix multiplication in a distributed environment such
as BOINC: a lack of available memory, and the absence of double preci-
sion hardware. The library (with full Doxygen documentation) is available
for download from http://scigpu.orqg/.

Acknowledgements

The authors acknowledge financial support provided through NSF Award
PHY-0835713. Harvard University has been named a CUDA Center of
Excellence by NVIDIA, and has received several hardware donations

which were used in this work.

100

IC




