
Jeff Stuart and John D. Owens
University of California, Davis

DCGN - Message Passing on GPUs

DCGN was designed to aid developers by not only
allowing GPUs to communicate, but to do so
easily and without explicit oversight by the CPU.
To this extent, we evaluated DCGN based on
speed and parallel and efficiency, and also on
ease of programming and the reduction in lines of
code and total number of kernels.

Communication Calls
In testing communication calls, we found that
DCGN typically adds very little overhead. For
small data, the overhead above MVAPICH2 was
less than 0.5 ms. For larger data, the overhead
grew with respect to the required time for PCI-e
transfers. In fact, the overwhelming majority of the
incurred overhead stemmed from PCI-e transfers.

Microbenchmarks
Beyond testing basic communication, we also
tested against a few applications. We
implemented a version in DCGN and one using
GPUs as slave (GAS) devices. DCGN performed
within 10% of the speed and efficiency of GAS
applications, and in some cases performed faster
than the GAS application.

Code Differences
DCGN allowed each application to be written
using only a single kernel and invocation, whereas
the GAS versions required several kernels and
numerous kernel invocations.

Results

Message Passing
DCGN stands for Distributed Computing for GPU
Networks. DCGN allows CUDA developers to
issue message-passing commands on the GPU
without explicit CPU supervision or interference.

Dynamic Communication
DCGN allows for fully-dynamic communication.
Unlike many previous GPU communication
libraries, DCGN allows for both flexible
communication and efficient communication.

No CPU Oversight
DCGN removes the necessity for explicit oversight
by the CPU. And due to the use of a polling
scheme, CUDA kernels do not have to exit when
communication would be required.

Slots
In order to achieve efficient runtimes, DCGN uses
slots: a user-specified maximum number of
simultaneous communication requests allowed.
DCGN reserves enough memory for N
communication requests (N = #slots). The user
must explicitly index a slot when issuing a
communication request. This mitigates the need
for locking primitives on the GPU.

CPU Utilization
DCGN lets developers run CPU kernels
simultaneously with GPU kernels. The method for
writing and launching CPU kernels is nearly
orthogonal to the methods for GPU kernels.

What is DCGN?
DCGN was created for two reasons; 1) because
static communication libraries such as CUDASA
[1] and Zippy [2] only offered communication via
the partitioned global-address space (PGAS)
metaphor, and 2) previous dynamic
communication [3] on the GPU suffered from poor
performance.

DCGN merges the positives from 1) and 2)
without taking any of the negatives. Excellent
performance is achieved with truly dynamic
communication.

[1] M. Strengert, C. Mller, C. Dachsbacher, and T. Ertl. CUDASA: Compute Unified Device and Systems
Architecture. In Eurographics Symposium on Parallel Graphics and Visualization (EGPGV08), pages 49–56,
2008.
[2] Z. Fan, F. Qiu, and A. E. Kaufman. Zippy: A framework for computation and visualization on a GPU cluster.
Computer Graphics Forum, 27(2), June 2008.
[3] Adam Moerschell and John D. Owens. Distributed texture memory in a multi-GPU environment. Computer
Graphics Forum, 27(1):130–151, March 2008.

Background

The route for communication via DCGN is
complex, but as simple as possible. DCGN
threads on the CPU monitor for communication
requests and handle said requests appropriately,
often times through the use of a network interface
card.

Communication

