
CUDA Implementation of Monte Carlo Based Applications in Computational Chemistry

Akila Gothandaraman1,3, Revati Kumar2, Dongliang Yang2, Kenneth D. Jordan1,2, Gregory D. Peterson3
1Center for Simulation and Modeling (SAM), University of Pittsburgh

2Department of Chemistry, University of Pittsburgh
3Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville

Architectures such as multi-core processors, Reconfigurable Computing (RC) using Field-
Programmable Gate Arrays (FPGAs), and Graphics Processing Units (GPUs) have emerged as
alternatives in the landscape of high performance computing (HPC). In our research, we are particularly
interested in leveraging GPUs to accelerate classical and quantum Monte Carlo simulations in
computational chemistry. GPUs have undergone a tremendous growth due to the ever-growing
performance demands from the gaming industry. NVIDIA’s GPU solutions presently provide hundreds
of processing cores and tremendous on-chip memory bandwidth making them attractive for general-
purpose computing. The Compute Unified Device Architecture (CUDA) programming paradigm
allows us to exploit the computational power of the GPU without the need to invoke graphics functions,
alleviating the difficulty of programming GPUs for general-purpose computing.

Abstract

This work was partially supported by the University of Tennessee Computational Science Initiative and the
National Science Foundation grant CHE – 0625598 .

Implementation of the Monte Carlo Applications on NVIDIA
GPUs using Compute Unified Device Architecture (CUDA)

Quantum Monte Carlo (QMC)
  O(N) atom positions copied from host memory to device memory using CUDA runtime
  Execution Configuration: 1D grid of blocks and block of threads
  Subset of rows of the matrix (N/T) to each thread block

  Each thread calculates the interactions between its atom and all other atoms
  Different levels of memory hierarchy on the GPU (16 KB shared memory per block)

  A thread block loads positions of T atoms from device memory to shared memory
  In-place reductions of row-wise function values on GPU to produce O(N) results
  Final reductions on the CPU to produce O(1) potential energy or wave function
 We consider naïve (entire matrix evaluation) and optimized (upper/lower triangular matrix
evaluation) implementations as well as experiment with entirely single-, entirely double- and
mixed- precision (single-precision for function evaluations and double-precision for
accumulations) algorithms.

This work explores NVIDIA GPUs platforms to accelerate the kernels of quantum
and classical Monte Carlo applications.

Future work includes the following:
  Optimize the GPU implementation of the kernels of the classical Monte Carlo
 algorithm to study water
  Experiment with the numerical precisions and choose the algorithm that provides
 the best performance on the GPU (both speedup and accuracy)
  Extending the GPU implementation from the simple TIP4P model to the DPP
 many-body force field

Implementation Results

Algorithm

Monte Carlo methods involve sampling a number of configurations of a collection of particles
and averaging the properties over a large number of samples. With increased computational
resources, one can simulate larger physical systems for longer times.

We use the Quantum Monte Carlo (Variational Monte Carlo) to obtain the structural and
energetic properties a cluster of inert gas atoms
Algorithm
REPEAT (for n iterations)

 Step 1: Select a reference configuration, R (x, y, z) at random.
 Step 2: Obtain a new configuration, R’ by adding a small random displacement to all particles in the
 above configuration.
 Step 3: Compute the ground-state properties (potential energy, wave function) of the particles
 in the current configuration, R’.
 Step 4: Accept or reject the present configuration using the ratio of the wave function values.

UNTIL finished

Implementation Strategy: Identify the computationally intensive kernels of the algorithm – O(N2)
potential energy and wave function calculation. We use pair-wise (two-body) model for calculations
of potential energy and wave function.

Classical Monte Carlo method is used to study water, from clusters to the condensed phase
Our project involves the implementation of an efficient algorithm to perform Monte Carlo
simulations on the GPUs in order to study the phase diagram of water with the DPP many-body force
field developed in our group [1]. As a preliminary step we are developing a Monte Carlo
implementation of the simple TIP4P water model [2] on the GPU platform.
Algorithm
REPEAT (for n iterations)

 Step 1: Select a reference configuration, R (x, y, z).
 Step 2: Compute the energy for this configuration.
 Step 3: Perturb the configuration in Step 1 with a random displacement (translational and rotational)
 to obtain a new configuration, R’ and repeat Step 2.
 Step 4: If the energy difference between R and R’ satisfies a certain criterion, we accept the
 configuration and energy in Step 3.

UNTIL finished
We wish to extend this to non-pairwise additive systems where the energy difference calculations involve
calculating the total potential energy before and after the perturbation (DPP water model).

Conclusions and Future Work

 CUDA Computational Grid (1D Grid)

 Data Movement between CPU and GPU

 Computational Grid (naïve implementation)

Classical Monte Carlo
The CUDA kernel uses the same grid setup as the QMC with the following differences,
 Different number of floating-point operations in the kernel
 We compute the total Lennard-Jones and electrostatic forces from a cluster of water
 molecules

Computational Grid (optimized implementation)

 Quantum Monte Carlo (QMC) Application
Baseline CPU:
  Eight core Intel Xeon Clovertown 2.66 GHz
  C++ software implementation (double-precision,), Intel MKL provided marginal speedup

GPU Implementation:
  NVIDIA Tesla C1060 GPU (240 processing cores)
  CUDA: Naïve and Optimized implementations (64 threads in each block)
  Single-precision has the best speedup performance with least accuracy. Mixed-precision
 implementation has the advantage of higher speedup performance and improved accuracy

mixed, naïve

 Speedup for the GPU implementations (compared to
double-precision on a multi-core CPU) for QMC

mixed, optimized

double-precision

References
[1] A. Defusco, D. P. Schofield and K. D. Jordan, "Comparison of models with distributed polarizable sites for describing water clusters," Molecular Physics, vol. 105, pp.
 2681-2696, 2007.
[2] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, "Comparison of simple potential functions for simulating liquid water," Journal of Chemical
 Physics, vol. 79, pp. 926-935, 1983.

Classical Monte Carlo Application

 Error Performance (compared to
double-precision on the CPU) for QMC

mixed-precision

double-precision

Baseline CPU:
  One core of the Intel Xeon X5570 2.93 GHz
 processor
  C software implementation (double-precision)

GPU Implementation:
  NVIDIA Tesla C1060 GPU
  CUDA: Mixed-precision (16, threads in each block,
 single-precision for function (Lennard Jones and
 electrostatic forces) evaluations and double-
 precision for accumulations) using TIP4P model

 Speedup of the GPU implementation (compared
to double-precision on the CPU)

for classical Monte Carlo using TIP4P

mixed-precision

