
•  CPU	
  
–  Bigger	
  Systems	
  
–  More	
  Expensive	
  Facili:es	
  
–  Bigger	
  Power	
  Bills	
  
–  Lower	
  System	
  Reliability	
  

•  GPU	
  
–  Faster	
  
–  Less	
  power	
  
–  Lower	
  cost	
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GPU	
  Technology	
  
•  NVIDIA:	
  	
  Fermi	
  chip	
  first	
  to	
  support	
  HPC	
  

–  Formed	
  partnerships	
  with	
  Cray,	
  IBM	
  on	
  HPC	
  systems	
  
–  #1,	
  #3	
  systems	
  on	
  TOP500	
  (Fermi,	
  China)	
  

•  AMD/ATI:	
  Primarily	
  graphics	
  currently	
  
–  #7	
  system	
  on	
  TOP500	
  (AMD-­‐Radeon,	
  China)	
  
–  Fusion	
  chip	
  in	
  2011	
  (5	
  TeraFlops)	
  

•  Intel:	
  Many	
  Integrated	
  Core	
  (2012),	
  	
  32-­‐64	
  cores	
  	
  

GPU:	
  2008	
  
933Gflops	
  
150W	
  

CPU:2008	
  
~45	
  Gflops	
  
160W	
  

²  1.1 TeraFlops 
²  8x increase in double 
precision 
²  Increase in memory 
bandwidth 
²  Error correcting    
memory 

NVIDIA: Tesla (2008) NVIDIA: Fermi (2010) 
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High-­‐Resolu,on	
  Rapid	
  Refresh	
  
Real-­‐,me,	
  12	
  hour	
  forecast,	
  3-­‐km	
  CONUS	
  domain,	
  

updated	
  hourly	
  
Rapid	
  Refresh	
  	
  

HRRR	
  

Explicit	
  predic,on	
  of	
  thunderstorms	
  
Improved	
  predic,on	
  of	
  terrain	
  
related	
  and	
  other	
  mesoscale	
  
features	
  (wind,	
  clouds,	
  precip)	
  
HRRR	
  runs	
  as	
  nest	
  within	
  RUC	
  	
  	
  or	
  
Rapid	
  Refresh	
  and	
  benefits	
  from	
  
RUC	
  /	
  RR	
  data	
  assimila,on	
  

NOAA	
  Global	
  Systems	
  Division	
  -­‐	
  Boulder,	
  Colorado	
  



Using	
  GPUs	
  for	
  	
  
Global	
  Cloud	
  Resolving	
  Models	
  (GCRM)	
  

	
  –  Benefits	
  
•  Clouds	
  have	
  a	
  major	
  influence	
  on	
  weather	
  and	
  climate	
  
•  Improvements	
  in	
  5-­‐100	
  day	
  forecasts	
  

•  Improved	
  Hurricane	
  track	
  and	
  intensity	
  

–  Ac:ve	
  developments	
  in	
  the	
  research	
  community	
  
•  NICAM:	
  University	
  of	
  Tokyo	
  
•  GCRM:	
  Colorado	
  State	
  University	
  
•  NIM:	
  NOAA	
  Earth	
  System	
  Research	
  Laboratory	
  

–  Non-­‐hydrosta:c	
  Icosahedral	
  Model	
  (NIM)	
  
•  Targe:ng	
  2KM	
  horizontal	
  resolu:on	
  
•  Uniform,	
  hexagonal-­‐based,	
  icosahedral	
  grid	
  
•  Novel	
  indirect	
  addressing	
  scheme	
  used	
  that	
  permits	
  concise,	
  efficient	
  code	
  

NIM	
  
Icosahedral	
  	
  

Grid	
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–  NIM	
  was	
  designed	
  for	
  CPU	
  and	
  GPU	
  Architectures	
  
–  Code	
  converted	
  to	
  CUDA	
  using	
  the	
  F2C-­‐ACC	
  compiler	
  we	
  developed	
  

–  Commercial	
  compilers	
  were	
  not	
  available	
  in	
  2008	
  	
  
	
  

s1	
   s2	
   s3	
   s4	
  

s2	
  

Accelerator	
  Approach	
  
init	
   dynamics	
   physics	
   output	
  

dynamics	
   physics	
  

Whole	
  Model	
  Approach	
  

CPU#1 

Input	
   Output	
  

Single	
  GPU	
  	
  
communica,ons	
  

GPU#1 

CPU#1 CPU#2 

Mul,	
  -­‐	
  GPU	
  
communica,ons	
  

SMS	
  

GPU#1 GPU#2 

MPI	
  communica:ons	
  

–  Serial	
  Performance	
  
•  2009:	
  34x	
  	
  Tesla	
  /	
  Harpertown	
  
•  2010:	
  25x	
  	
  Fermi	
  /	
  Nehalem	
  

–  Parallel	
  Performance	
  	
  
•  2010:	
  15x	
  with	
  MPI	
  communica,ons	
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Soiware	
  Development	
  
from	
  CPUs	
  to	
  GPUs	
  (2010s)	
  



GPU	
  Programming	
  Approaches	
  
•  Language	
  Approach	
  

– CUDA,	
  OpenCL,	
  CUDA	
  Fortran,	
  etc.	
  
– User	
  control	
  over	
  coding	
  and	
  op:miza:ons	
  

•  May	
  not	
  be	
  portable	
  across	
  architectures	
  
– Requires	
  that	
  separate	
  versions	
  be	
  maintained	
  

•  In	
  prac:ce	
  this	
  rarely	
  works	
  –	
  too	
  costly,	
  difficult	
  
•  Direc:ve-­‐based	
  Approach	
  

–  Single	
  source	
  for	
  CPU,	
  GPU,	
  serial,	
  parallel	
  
–  Appear	
  as	
  comments	
  in	
  the	
  source	
  

–  !ACC$DO	
  VECTOR	
  (1)	
  
–  Compilers	
  can	
  analyze	
  and	
  (hopefully)	
  generate	
  efficient	
  code	
  

•  Dependent	
  on	
  maturity	
  



Direc:ve-­‐Based	
  Fortran	
  GPU	
  	
  
Compilers	
  and	
  Portability	
  

PGI	
  

F2C-­‐ACC	
  

CAPS	
  

NVIDIA	
  

AMD	
  
Fortran	
  

Intel	
  	
  
Mul:-­‐core	
  

CUDA	
  

OpenCL	
  

GPU	
  Compilers	
  

Cray	
  

–  PGI:	
  	
  	
  	
  Accel	
  
–  F2C-­‐ACC:	
  OpenSource	
  

–  CAPS:	
  HMPP	
  
–  Cray:	
  	
  OMP	
  “like”	
  

•  No	
  industry	
  standard	
  for	
  direc:ves	
  (yet)	
  



ipn 

k 

NIM: a ( k, ipn ) 

NIM	
  Dynamics	
  
– Uniform,	
  hexagonal-­‐based,	
  icosahedral	
  grid	
  
– Novel	
  indirect	
  addressing	
  scheme	
  permits	
  
concise,	
  efficient	
  code	
  

	
  
– Dynamics	
  is	
  running	
  en:rely	
  on	
  GPUs	
  

•  Horizontal	
  data	
  dependencies	
  
•  2D	
  arrays	
  	
  (ver:cal,	
  horizontal)	
  
•  GPU	
  threading	
  across	
  the	
  ver:cal	
  

–  32,	
  96	
  levels	
  	
  increasing	
  to	
  192	
  levels	
  	
  at	
  finer	
  scales	
  
•  Physics	
  (scien:fic)	
  integra:on	
  in	
  progress	
  

Icosahedral	
  	
  
Grid	
  



F2C-­‐ACC	
  GPU	
  Compiler	
  
•  Developed	
  to	
  speed	
  paralleliza:on	
  of	
  NIM	
  

–  Commercial	
  compilers	
  were	
  not	
  available	
  in	
  2008	
  
•  Translates	
  Fortran	
  to	
  C	
  or	
  CUDA	
  

–  Many	
  (but	
  not	
  all)	
  language	
  features	
  supported	
  
–  Generates	
  readable,	
  debuggable	
  code	
  with	
  original	
  comments	
  retained	
  

•  Ten	
  direc:ves	
  for	
  code	
  paralleliza:on,	
  eg.	
  
	
  

–  ACC$REGION 	
   	
   	
   	
   	
  !	
  Define	
  GPU	
  regions	
  
–  ACC$DO 	
   	
   	
   	
   	
   	
  !	
  Iden:fy	
  loop	
  level	
  parallelism	
  
–  ACC$DATA 	
   	
   	
   	
   	
   	
  !	
  Move	
  data	
  between	
  CPU	
  and	
  GPU	
  
–  ACC$INSERT,	
  ACC$REMOVE 	
   	
  !	
  Hand	
  inser:ons	
  /	
  dele:ons	
  where	
  

	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  transla:on	
  is	
  not	
  available	
  
	
  
•  Available	
  on	
  request	
  
	
  



NIM 
routine 

CPU 1-core 
Time (sec) 

CPU 6-core 
Time (sec) 

F2C-ACC 
GPU Time 

(sec) 

HMPP GPU 
Time (sec) 

PGI GPU 
Time (sec) 

F2C-ACC 
Speedup vs. 6-

core CPU 

Total 8654 2068 449 -- -- 4.6 
vdmints 4559 1062 196 192 197 5.4 
vdmintv 2119 446 91 101 88 4.9 

flux 964 175 26 24 26 6.7 
vdn 131 86 18 17 18 4.8 

diag 389 74 42 33 -- 1.8 
force 80 33 7 11 13 4.7 

10 

Fortran	
  GPU	
  Compiler	
  Results	
  (2011)	
  
Using	
  NIM	
  G5	
  -­‐	
  10242	
  horizontal	
  points,	
  96	
  ver:cal	
  levels	
  

Fermi	
  GPU	
  vs.	
  Intel	
  Westmere	
  CPU	
  Socket	
  



•  Community	
  Model	
  used	
  worldwide	
  for	
  more	
  than	
  a	
  decade	
  
–  Significant	
  number	
  of	
  collaborators,	
  contributors	
  

•  Used	
  in	
  WRF-­‐ARW,	
  WRF-­‐NMM,	
  WRF-­‐RR,	
  WRF-­‐CHEM,	
  HWRF,	
  etc.	
  
•  Tradi:onal	
  cartesian	
  grid	
  

–  3D	
  arrays	
  	
  (horizontal,	
  ver:cal,	
  horizontal)	
  	
  =	
  =	
  >	
  array3D( i,k,j )!
•  Designed	
  for	
  CPU	
  architectures	
  
•  Limited	
  ability	
  to	
  change	
  the	
  code	
  

–  Must	
  con,nue	
  to	
  be	
  performance	
  portable	
  
	
  
•  GPU	
  paralleliza:on	
  	
  

–  In	
  progress	
  –	
  select	
  rou:nes	
  
–  Dependencies	
  in	
  ver:cal	
  
–  GPU:	
  threading	
  in	
  horizontal	
  dimensions	
  
–  Collapse	
  I,	
  j	
  dimensions	
  during	
  transpose	
  

WRF	
  Physics	
  

i 

j 

k 

WRF: a ( i,k,j ) 



Paralleliza:on	
  Factors	
  for	
  NIM	
  

•  Data	
  dependencies	
  guide	
  paralleliza:on	
  
–  Dynamics	
  are	
  in	
  the	
  horizontal	
  	
  

•  a	
  [	
  vert,	
  horiz	
  ]	
  
–  Physics	
  are	
  in	
  the	
  ver:cal	
  column	
  	
  

•  a	
  [	
  horiz	
  ,	
  vert	
  ]	
  
–  Transpose	
  needed	
  to	
  op:mize	
  memory	
  
accesses	
   j	
  

ik	
  

lat-lon a ( k, i, j ) 
 
NIM:    a [ k, indx) 

•  Code	
  design	
  a	
  dominant	
  factor	
  in	
  performance	
  
– Weather	
  codes	
  typically	
  have	
  a	
  high	
  memory	
  access	
  to	
  compute	
  
ra:o	
  

•  Implies	
  lots	
  of	
  accesses,	
  few	
  computa:ons	
  

–  Data	
  alignment	
  led	
  to	
  a	
  10x	
  improvement	
  



Successes	
  
•  Paralleliza:on	
  of	
  NIM	
  

–  5x	
  speedup	
  of	
  NIM	
  dynamics	
  (socket-­‐to-­‐socket)	
  
–  F2C-­‐ACC	
  con:nues	
  to	
  be	
  used	
  for	
  NIM	
  

•  Development	
  of	
  F2C-­‐ACC	
  
– Useful	
  for	
  comparisons	
  to	
  commercial	
  compilers	
  

•  Establish	
  performance	
  benchmarks	
  
•  Ease	
  of	
  use:	
  readability	
  of	
  generated	
  code	
  
•  Direc,ves	
  that	
  support	
  our	
  weather,	
  climate	
  codes	
  
•  Validate	
  correctness	
  of	
  results	
  

–  Feedback	
  to	
  compiler	
  vendors	
  
•  Communicate	
  needs	
  in	
  the	
  weather	
  and	
  climate	
  community	
  



Challenges	
  
•  Valida:ng	
  results	
  	
  

–  dependent	
  on	
  the	
  computer	
  architecture	
  
•  CPU,	
  GPU,	
  Intel,	
  IBM,	
  NVIDIA,	
  AMDm	
  etyc	
  

–  Physics	
  is	
  more	
  sensi:ve	
  than	
  dynamics	
  
– How	
  do	
  you	
  determine	
  acceptable	
  results?	
  

•  Performance	
  portability	
  
– Modest	
  to	
  extensive	
  code	
  changes	
  
–  Promo:on	
  of	
  variables	
  for	
  correctness	
  

•  Demo:on	
  of	
  variables	
  for	
  performance	
  
–  Loop	
  restructuring	
  
–  Blocking	
  and	
  threading	
  control	
  



Challenges	
  
•  Data	
  management	
  

– How	
  to	
  work	
  with	
  high	
  data	
  volume	
  
•  15	
  KM,	
  2M	
  horizontal	
  points,	
  96	
  ver:cal	
  

–  2GB	
  per	
  variable	
  per	
  output	
  :me	
  
•  1.75KM,	
  167M	
  horizontal	
  points,	
  192	
  ver:cal	
  

–  Projected	
  64GB	
  per	
  variable	
  per	
  output	
  :me	
  

•  Visualiza:on	
  
–  Exploring	
  using	
  gaming	
  soiware	
  

•  GPUs,	
  progressive	
  disclosure	
  



Conclusion	
  
•  CommiMed	
  to	
  a	
  single	
  source	
  

–  Performance	
  portable	
  between	
  CPU,	
  GPU,	
  serial,	
  parallel	
  
•  NVIDIA,	
  AMD,	
  Intel,	
  etc	
  

– We	
  an:cipate	
  significant	
  challenges	
  for	
  legacy	
  codes	
  
•  We	
  will	
  con:nue	
  to	
  compare	
  compilers	
  

–  F2C-­‐ACC,	
  HMPP,	
  and	
  PGI	
  Accel	
  
•  Performance,	
  ease-­‐of-­‐use	
  

•  Challenges	
  Remain	
  
–  Codes	
  take	
  too	
  long	
  to	
  port	
  to	
  GPUs	
  
–  Performance	
  portability	
  a	
  concern	
  
–  Standards	
  for	
  GPU	
  direc:ves	
  
	
  


