
•  CPU	

–  Bigger	
 Systems	

–  More	
 Expensive	
 Facili:es	

–  Bigger	
 Power	
 Bills	

–  Lower	
 System	
 Reliability	

•  GPU	

–  Faster	

–  Less	
 power	

–  Lower	
 cost	

Xbox	
 360	

DOE	
 Jaguar	

Successes	
 and	
 Challenges	
 using	

GPUs	
 for	
 Weather	
 and	
 	

Climate	
 Models	

Mark	
 GoveM	

Jacques	
 Middlecoff,	
 Tom	
 Henderson,	

Jim	
 Rosinski,	
 Craig	
 Tierney	

Regional Models

Global Models

GPU	
 Technology	

•  NVIDIA:	
 	
 Fermi	
 chip	
 first	
 to	
 support	
 HPC	

–  Formed	
 partnerships	
 with	
 Cray,	
 IBM	
 on	
 HPC	
 systems	

–  #1,	
 #3	
 systems	
 on	
 TOP500	
 (Fermi,	
 China)	

•  AMD/ATI:	
 Primarily	
 graphics	
 currently	

–  #7	
 system	
 on	
 TOP500	
 (AMD-­‐Radeon,	
 China)	

–  Fusion	
 chip	
 in	
 2011	
 (5	
 TeraFlops)	

•  Intel:	
 Many	
 Integrated	
 Core	
 (2012),	
 	
 32-­‐64	
 cores	
 	

GPU:	
 2008	

933Gflops	

150W	

CPU:2008	

~45	
 Gflops	

160W	

²  1.1 TeraFlops
²  8x increase in double
precision
²  Increase in memory
bandwidth
²  Error correcting
memory

NVIDIA: Tesla (2008) NVIDIA: Fermi (2010)

Page	
 3	

High-­‐Resolu,on	
 Rapid	
 Refresh	

Real-­‐,me,	
 12	
 hour	
 forecast,	
 3-­‐km	
 CONUS	
 domain,	

updated	
 hourly	

Rapid	
 Refresh	
 	

HRRR	

Explicit	
 predic,on	
 of	
 thunderstorms	

Improved	
 predic,on	
 of	
 terrain	

related	
 and	
 other	
 mesoscale	

features	
 (wind,	
 clouds,	
 precip)	

HRRR	
 runs	
 as	
 nest	
 within	
 RUC	
 	
 	
 or	

Rapid	
 Refresh	
 and	
 benefits	
 from	

RUC	
 /	
 RR	
 data	
 assimila,on	

NOAA	
 Global	
 Systems	
 Division	
 -­‐	
 Boulder,	
 Colorado	

Using	
 GPUs	
 for	
 	

Global	
 Cloud	
 Resolving	
 Models	
 (GCRM)	

	
 –  Benefits	

•  Clouds	
 have	
 a	
 major	
 influence	
 on	
 weather	
 and	
 climate	

•  Improvements	
 in	
 5-­‐100	
 day	
 forecasts	

•  Improved	
 Hurricane	
 track	
 and	
 intensity	

–  Ac:ve	
 developments	
 in	
 the	
 research	
 community	

•  NICAM:	
 University	
 of	
 Tokyo	

•  GCRM:	
 Colorado	
 State	
 University	

•  NIM:	
 NOAA	
 Earth	
 System	
 Research	
 Laboratory	

–  Non-­‐hydrosta:c	
 Icosahedral	
 Model	
 (NIM)	

•  Targe:ng	
 2KM	
 horizontal	
 resolu:on	

•  Uniform,	
 hexagonal-­‐based,	
 icosahedral	
 grid	

•  Novel	
 indirect	
 addressing	
 scheme	
 used	
 that	
 permits	
 concise,	
 efficient	
 code	

NIM	

Icosahedral	
 	

Grid	

January	
 18,	
 2011	
 4	
 ACS	
 Program	
 Review	

–  NIM	
 was	
 designed	
 for	
 CPU	
 and	
 GPU	
 Architectures	

–  Code	
 converted	
 to	
 CUDA	
 using	
 the	
 F2C-­‐ACC	
 compiler	
 we	
 developed	

–  Commercial	
 compilers	
 were	
 not	
 available	
 in	
 2008	
 	

	

s1	
 s2	
 s3	
 s4	

s2	

Accelerator	
 Approach	

init	
 dynamics	
 physics	
 output	

dynamics	
 physics	

Whole	
 Model	
 Approach	

CPU#1

Input	
 Output	

Single	
 GPU	
 	

communica,ons	

GPU#1

CPU#1 CPU#2

Mul,	
 -­‐	
 GPU	

communica,ons	

SMS	

GPU#1 GPU#2

MPI	
 communica:ons	

–  Serial	
 Performance	

•  2009:	
 34x	
 	
 Tesla	
 /	
 Harpertown	

•  2010:	
 25x	
 	
 Fermi	
 /	
 Nehalem	

–  Parallel	
 Performance	
 	

•  2010:	
 15x	
 with	
 MPI	
 communica,ons	

	

5	

Soiware	
 Development	

from	
 CPUs	
 to	
 GPUs	
 (2010s)	

GPU	
 Programming	
 Approaches	

•  Language	
 Approach	

– CUDA,	
 OpenCL,	
 CUDA	
 Fortran,	
 etc.	

– User	
 control	
 over	
 coding	
 and	
 op:miza:ons	

•  May	
 not	
 be	
 portable	
 across	
 architectures	

– Requires	
 that	
 separate	
 versions	
 be	
 maintained	

•  In	
 prac:ce	
 this	
 rarely	
 works	
 –	
 too	
 costly,	
 difficult	

•  Direc:ve-­‐based	
 Approach	

–  Single	
 source	
 for	
 CPU,	
 GPU,	
 serial,	
 parallel	

–  Appear	
 as	
 comments	
 in	
 the	
 source	

–  !ACC$DO	
 VECTOR	
 (1)	

–  Compilers	
 can	
 analyze	
 and	
 (hopefully)	
 generate	
 efficient	
 code	

•  Dependent	
 on	
 maturity	

Direc:ve-­‐Based	
 Fortran	
 GPU	
 	

Compilers	
 and	
 Portability	

PGI	

F2C-­‐ACC	

CAPS	

NVIDIA	

AMD	

Fortran	

Intel	
 	

Mul:-­‐core	

CUDA	

OpenCL	

GPU	
 Compilers	

Cray	

–  PGI:	
 	
 	
 	
 Accel	

–  F2C-­‐ACC:	
 OpenSource	

–  CAPS:	
 HMPP	

–  Cray:	
 	
 OMP	
 “like”	

•  No	
 industry	
 standard	
 for	
 direc:ves	
 (yet)	

ipn

k

NIM: a (k, ipn)

NIM	
 Dynamics	

– Uniform,	
 hexagonal-­‐based,	
 icosahedral	
 grid	

– Novel	
 indirect	
 addressing	
 scheme	
 permits	

concise,	
 efficient	
 code	

	

– Dynamics	
 is	
 running	
 en:rely	
 on	
 GPUs	

•  Horizontal	
 data	
 dependencies	

•  2D	
 arrays	
 	
 (ver:cal,	
 horizontal)	

•  GPU	
 threading	
 across	
 the	
 ver:cal	

–  32,	
 96	
 levels	
 	
 increasing	
 to	
 192	
 levels	
 	
 at	
 finer	
 scales	

•  Physics	
 (scien:fic)	
 integra:on	
 in	
 progress	

Icosahedral	
 	

Grid	

F2C-­‐ACC	
 GPU	
 Compiler	

•  Developed	
 to	
 speed	
 paralleliza:on	
 of	
 NIM	

–  Commercial	
 compilers	
 were	
 not	
 available	
 in	
 2008	

•  Translates	
 Fortran	
 to	
 C	
 or	
 CUDA	

–  Many	
 (but	
 not	
 all)	
 language	
 features	
 supported	

–  Generates	
 readable,	
 debuggable	
 code	
 with	
 original	
 comments	
 retained	

•  Ten	
 direc:ves	
 for	
 code	
 paralleliza:on,	
 eg.	

	

–  ACC$REGION 	
 	
 	
 	
 	
 !	
 Define	
 GPU	
 regions	

–  ACC$DO 	
 	
 	
 	
 	
 	
 !	
 Iden:fy	
 loop	
 level	
 parallelism	

–  ACC$DATA 	
 	
 	
 	
 	
 	
 !	
 Move	
 data	
 between	
 CPU	
 and	
 GPU	

–  ACC$INSERT,	
 ACC$REMOVE 	
 	
 !	
 Hand	
 inser:ons	
 /	
 dele:ons	
 where	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 transla:on	
 is	
 not	
 available	

	

•  Available	
 on	
 request	

	

NIM
routine

CPU 1-core
Time (sec)

CPU 6-core
Time (sec)

F2C-ACC
GPU Time

(sec)

HMPP GPU
Time (sec)

PGI GPU
Time (sec)

F2C-ACC
Speedup vs. 6-

core CPU

Total 8654 2068 449 -- -- 4.6
vdmints 4559 1062 196 192 197 5.4
vdmintv 2119 446 91 101 88 4.9

flux 964 175 26 24 26 6.7
vdn 131 86 18 17 18 4.8

diag 389 74 42 33 -- 1.8
force 80 33 7 11 13 4.7

10

Fortran	
 GPU	
 Compiler	
 Results	
 (2011)	

Using	
 NIM	
 G5	
 -­‐	
 10242	
 horizontal	
 points,	
 96	
 ver:cal	
 levels	

Fermi	
 GPU	
 vs.	
 Intel	
 Westmere	
 CPU	
 Socket	

•  Community	
 Model	
 used	
 worldwide	
 for	
 more	
 than	
 a	
 decade	

–  Significant	
 number	
 of	
 collaborators,	
 contributors	

•  Used	
 in	
 WRF-­‐ARW,	
 WRF-­‐NMM,	
 WRF-­‐RR,	
 WRF-­‐CHEM,	
 HWRF,	
 etc.	

•  Tradi:onal	
 cartesian	
 grid	

–  3D	
 arrays	
 	
 (horizontal,	
 ver:cal,	
 horizontal)	
 	
 =	
 =	
 >	
 array3D(i,k,j)!
•  Designed	
 for	
 CPU	
 architectures	

•  Limited	
 ability	
 to	
 change	
 the	
 code	

–  Must	
 con,nue	
 to	
 be	
 performance	
 portable	

	

•  GPU	
 paralleliza:on	
 	

–  In	
 progress	
 –	
 select	
 rou:nes	

–  Dependencies	
 in	
 ver:cal	

–  GPU:	
 threading	
 in	
 horizontal	
 dimensions	

–  Collapse	
 I,	
 j	
 dimensions	
 during	
 transpose	

WRF	
 Physics	

i

j

k

WRF: a (i,k,j)

Paralleliza:on	
 Factors	
 for	
 NIM	

•  Data	
 dependencies	
 guide	
 paralleliza:on	

–  Dynamics	
 are	
 in	
 the	
 horizontal	
 	

•  a	
 [
 vert,	
 horiz	
]	

–  Physics	
 are	
 in	
 the	
 ver:cal	
 column	
 	

•  a	
 [
 horiz	
 ,	
 vert	
]	

–  Transpose	
 needed	
 to	
 op:mize	
 memory	

accesses	
 j	

ik	

lat-lon a (k, i, j)

NIM: a [k, indx)

•  Code	
 design	
 a	
 dominant	
 factor	
 in	
 performance	

– Weather	
 codes	
 typically	
 have	
 a	
 high	
 memory	
 access	
 to	
 compute	

ra:o	

•  Implies	
 lots	
 of	
 accesses,	
 few	
 computa:ons	

–  Data	
 alignment	
 led	
 to	
 a	
 10x	
 improvement	

Successes	

•  Paralleliza:on	
 of	
 NIM	

–  5x	
 speedup	
 of	
 NIM	
 dynamics	
 (socket-­‐to-­‐socket)	

–  F2C-­‐ACC	
 con:nues	
 to	
 be	
 used	
 for	
 NIM	

•  Development	
 of	
 F2C-­‐ACC	

– Useful	
 for	
 comparisons	
 to	
 commercial	
 compilers	

•  Establish	
 performance	
 benchmarks	

•  Ease	
 of	
 use:	
 readability	
 of	
 generated	
 code	

•  Direc,ves	
 that	
 support	
 our	
 weather,	
 climate	
 codes	

•  Validate	
 correctness	
 of	
 results	

–  Feedback	
 to	
 compiler	
 vendors	

•  Communicate	
 needs	
 in	
 the	
 weather	
 and	
 climate	
 community	

Challenges	

•  Valida:ng	
 results	
 	

–  dependent	
 on	
 the	
 computer	
 architecture	

•  CPU,	
 GPU,	
 Intel,	
 IBM,	
 NVIDIA,	
 AMDm	
 etyc	

–  Physics	
 is	
 more	
 sensi:ve	
 than	
 dynamics	

– How	
 do	
 you	
 determine	
 acceptable	
 results?	

•  Performance	
 portability	

– Modest	
 to	
 extensive	
 code	
 changes	

–  Promo:on	
 of	
 variables	
 for	
 correctness	

•  Demo:on	
 of	
 variables	
 for	
 performance	

–  Loop	
 restructuring	

–  Blocking	
 and	
 threading	
 control	

Challenges	

•  Data	
 management	

– How	
 to	
 work	
 with	
 high	
 data	
 volume	

•  15	
 KM,	
 2M	
 horizontal	
 points,	
 96	
 ver:cal	

–  2GB	
 per	
 variable	
 per	
 output	
 :me	

•  1.75KM,	
 167M	
 horizontal	
 points,	
 192	
 ver:cal	

–  Projected	
 64GB	
 per	
 variable	
 per	
 output	
 :me	

•  Visualiza:on	

–  Exploring	
 using	
 gaming	
 soiware	

•  GPUs,	
 progressive	
 disclosure	

Conclusion	

•  CommiMed	
 to	
 a	
 single	
 source	

–  Performance	
 portable	
 between	
 CPU,	
 GPU,	
 serial,	
 parallel	

•  NVIDIA,	
 AMD,	
 Intel,	
 etc	

– We	
 an:cipate	
 significant	
 challenges	
 for	
 legacy	
 codes	

•  We	
 will	
 con:nue	
 to	
 compare	
 compilers	

–  F2C-­‐ACC,	
 HMPP,	
 and	
 PGI	
 Accel	

•  Performance,	
 ease-­‐of-­‐use	

•  Challenges	
 Remain	

–  Codes	
 take	
 too	
 long	
 to	
 port	
 to	
 GPUs	

–  Performance	
 portability	
 a	
 concern	

–  Standards	
 for	
 GPU	
 direc:ves	

	

