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— Bigger Systems

— More Expensive Facilities
— Bigger Power Bills

— Lower System Reliability

* GPU

— Faster
— Less power
— Lower cost s; /
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GPU Technology

 NVIDIA: Fermi chip first to support HPC
— Formed partnerships with Cray, IBM on HPC systems
— #1, #3 systems on TOP500 (Fermi, China)

 AMD/ATI: Primarily graphics currently
— #7 system on TOP500 (AMD-Radeon, China)

* Intel: Many Integrated Core (2012), 32-64 cores
NVIDIA: Fermi (2010) NVIDIA: Tesla (2008)
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Resolution Rapid Refresh
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Using GPUs for
Global Cloud Resolving Models (GCRM)

— Benefits

* Clouds have a major influence on weather and climate
* Improvements in 5-100 day forecasts

* Improved Hurricane track and intensity

— Active developments in the research community

 NICAM: University of Tokyo NIM
* GCRM: Colorado State University lcosahedral
* NIM: NOAA Earth System Research Laboratory Grid

— Non-hydrostatic Icosahedral Model (NIM)

* Targeting 2KM horizontal resolution
* Uniform, hexagonal-based, icosahedral grid
. © Novel indirect addressing scheme used that permits concise, efficient code
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Software Development

from CPUs to GPUs (2010s)
Accelerator Approach Whole Model Approach

— NIM was designed for CPU and GPU Architectures
— Code converted to CUDA using the F2C-ACC compiler we developed

— Commercial compilers were not available in 2008

Multi - GPU
communications

Single GPU — Serial Performance

communications

MPI communications



GPU Programming Approaches

* Language Approach
— CUDA, OpenCL, CUDA Fortran, etc.

— User control over coding and optimizations
* May not be portable across architectures

— Requires that separate versions be maintained
* |n practice this rarely works — too costly, difficult

* Directive-based Approach
— Single source for CPU, GPU, serial, parallel

— Appear as comments in the source
— IACC$DO VECTOR (1)

w — Compilers can analyze and (hopefully) generate efficient code

‘ ' * Dependent on maturity




Directive-Based Fortran GPU
Compilers and Portability

* No industry standard for directives (yet)
— PGI:  Accel — CAPS: HMPP

— F2C-ACC: OpenSource — Cray: OMP “like”

GPU Compilers

F2C-ACC ~UOA
Fortran
CAPS OpenCL \

NVIDIA

Cray




NIM Dynamics

— Uniform, hexagonal-based, icosahedral grid

— Novel indirect addressing scheme permits i
concise, efficient code "'

— Dynamics is running entirely on GPUs
* Horizontal data dependencies
e 2D arrays (vertical, horizontal)

* GPU threading across the vertical
— 32,96 levels increasing to 192 levels at finer scales

* Physics (scientific) integration in progress >
blocking >
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F2C-ACC GPU Compiler

 Developed to speed parallelization of NIM
— Commercial compilers were not available in 2008

* Translates Fortran to C or CUDA
— Many (but not all) language features supported
— Generates readable, debuggable code with original comments retained

 Ten directives for code parallelization, eg.

— ACCSREGION | Define GPU regions

— ACCSDO | Identify loop level parallelism

— ACCSDATA | Move data between CPU and GPU
— ACCSINSERT, ACCSREMOVE | Hand insertions / deletions where

translation is not available

* _Available on request
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Fortran GPU Compiler Results (2011)

Using NIM G5 - 10242 horizontal points, 96 vertical levels
Fermi GPU vs. Intel Westmere CPU Socket

NIM CPU 1-core CPU 6-core F2C-ACC HMPP GPU PGl GPU F2C-ACC
routine Time (sec) Time (sec) GPU Time Time (sec) Time (sec) Speedup vs. 6-
(sec) core CPU

Total 8654 2068 449 -- -- 4.6
vdmints 4559 1062 196 192 197 5.4
vdminty 2119 446 91 101 88 4.9
flux 964 175 26 24 26 6.7

vdn 131 86 18 17 18 4.8

diag 389 74 42 33 -- 1.8

force 80 33 7 11 13 4.7
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WRF Physics

Community Model used worldwide for more than a decade
— Significant number of collaborators, contributors

Used in WRF-ARW, WRF-NMM, WRF-RR, WRF-CHEM, HWREF, etc.
Traditional cartesian grid

— 3D arrays (horizontal, vertical, horizontal) ==>array3D( i,k,Jj )
Designed for CPU architectures

Limited ability to change the code
— Must continue to be performance portable

GPU parallelization
— In progress — select routines

— Dependencies in vertical K
— GPU: threading in horizontal dimensions
— Collapse |, j dimensions during transpose

WREF':

a (1,k,3)
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Parallelization Factors for NIV

* Code design a dominant factor in performance

— Weather codes typically have a high memory access to compute
ratio
* Implies lots of accesses, few computations

— Data alighment led to a 10x improvement

 Data dependencies guide parallelization
— Dynamics are in the horizontal

lat-1lon a ( k, 1, 7 )

e a[vert, horiz] NIM: a [ k, indx)
— Physics are in the vertical column k1 i
* a[horiz, vert ] e
w— Transpose needed to optimize memory P

v accesses j




Successes

e Parallelization of NIM
— 5x speedup of NIM dynamics (socket-to-socket)
— F2C-ACC continues to be used for NIM

 Development of F2C-ACC

— Useful for comparisons to commercial compilers
e Establish performance benchmarks
* Ease of use: readability of generated code
* Directives that support our weather, climate codes
* Validate correctness of results

— Feedback to compiler vendors
e Communicate needs in the weather and climate community
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Challenges

e Validating results

— dependent on the computer architecture
 CPU, GPU, Intel, IBM, NVIDIA, AMDm etyc

— Physics is more sensitive than dynamics
— How do you determine acceptable results?

* Performance portability

— Modest to extensive code changes

— Promotion of variables for correctness
 Demotion of variables for performance

— Loop restructuring
@ — Blocking and threading control
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Challenges

* Data management

— How to work with high data volume

15 KM, 2M horizontal points, 96 vertical
— 2GB per variable per output time

e 1.75KM, 167M horizontal points, 192 vertical
— Projected 64GB per variable per output time

 Visualization

— Exploring using gaming software
 GPUs, progressive disclosure

UNITY 2D

game development tool
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Conclusion

* Committed to a single source

— Performance portable between CPU, GPU, serial, parallel
 NVIDIA, AMD, Intel, etc

— We anticipate significant challenges for legacy codes

 We will continue to compare compilers
— F2C-ACC, HMPP, and PGI Accel

 Performance, ease-of-use

* Challenges Remain
— Codes take too long to port to GPUs
— Performance portability a concern
— Standards for GPU directives
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