
1

NVIDIA Tegra: Zooming to

Bang Bang Racing & Next-Gen

Mobile Gaming

Lars M. Bishop, NVIDIA

Mike Clarke, Playbox Ltd.

2

Agenda

Bringing high-end games to Android

The common stages of a port

Target APIs and Android OS versions

Application lifecycle

Graphics topics

Development tools and aids

Real-world case-study: Bang Bang Racing

Presented by Mike Clarke

3

Targeting Android

What screen sizes and form factors do you intend to target?

Tablet? Phone? Both?

Widescreen? Portrait? Both?

Input devices?

Touch? Multi-touch?

Accelerometer/gyros?

What versions of Android do you intend to support?

Include Éclair (2.1) and Froyo (2.2) support?

Support only Gingerbread (2.3) and newer?

Rendering HW requirements?

Can require workload / TAM tradeoffs

4

Bringing High-end Gaming to Android

Common sources today:

Ported from existing console/PC titles

Ported and expanded/improved from existing mobile titles

Co-developed on multiple mobile platforms

Common phases:

“Bring-up”

“Tuning”

“Productization”

Plan your port up-front…

5

Stages of the Port: Bringup

Common work items:

Build system integration

System APIs (sockets, file I/O, input, etc)

Renderer creation (OpenGL ES)

Content re-export/packing

Initial debug

Do not ignore productization planning even at this stage

6

Bringing up the Renderer

Pivotal part of any port

OpenGL ES is the 3D API for Android

Mobile titles likely have one

PC and console titles probably don’t

OpenGL ES can be “brought up” on desktop!

Linux/Windows OpenGL ES emulators to the rescue

Can make a world of difference

Must choose between OpenGL ES 1.x and 2.0

Next-gen titles require 2.0

All titles should consider 2.0

7

Stages of the Port: Tuning

Performance tuning

Determine the main bottlenecks (CPUs, GPU, memory bandwidth)

Circle down on them with the available tools

Gameplay tuning

Sensitivity/variance of input devices and sensors

Adjusting for screen size and form-factor (e.g. on-screen “gamepads”)

Important to have multiple devices no later than the tuning phase

8

Stages of the Port: Productization

Key to good reviews and happy users

More than “doesn’t crash”

Includes handling:

Android lifecycle

3D platform differences

OS versions

Power management

9

Android Market Share (2 Feb 2010)

Android Version
Active Market

Share

Gingerbread (2.3) 0.8%

Froyo (2.2) 57.6%

Eclair (2.0/2.1) 31.4%

Donut (1.6) 6.3%

Cupcake (1.5) 3.9%

^ "Platform Versions". Android Developers.

http://developer.android.com/resources/dashboard/platform-versions.html.

Retrieved 2011-02-02. "based on the number of Android devices that have

accessed Android Market within a 14-day period ending on the data collection

date noted below"

Froyo

Éclair

Gingerbread

Cupcake

Donut

http://en.wikipedia.org/wiki/File:Android_os_distribution.png
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html

10

Native Code, Java and the NDK

High-end game content is C/C++

Android apps are Java-focused

The Android Native Development Kit adds support for C/C++

Choosing your minimum Android SDK level determines:

The features you can use (newer means more)

The APIs that can be called from C/C++ (newer means more)

The oldest OS revision your game can support (older means larger

addressable market)

Decisions, decisions…

11

Android 2.1 (Éclair)

Available from native code (C/C++):

POSIX-like threads, file I/O, math, sockets

OpenGL ES 2.0

Not available from native code (C/C++):

EGL

User input

Audio

Video

Android UI rendering

In addition, the entire installable app must be installed to (limited)

internal storage

If you want to put large data on external storage, you MUST sideload

SDK API level 7+

12

Android 2.2 (Froyo)

Now available from native code C/C++:

The ability to lock a surface and CPU-render to it

In addition, applications can now request to

have most of their data (other than code) be

installed to external storage

This still may not remove the need to side-load data…

The Android Market places size limits on APKs

(currently about 50MB)

SDK API level 8+

13

Android 2.3 (Gingerbread)

Now available from native code C/C++:

OpenSL ES Audio

Pure-native application lifecycle

EGL!

Window management

User input (touch, buttons)

Sensors (accelerometer, gyro, compass)

Installed asset/resource loading

Basically, most games can do all of their work common work

(other than play videos) with no Java code

But the result will not run on Éclair or Froyo

SDK API level 9+

14

Android 3.0 (Honeycomb)

No new NDK for Honeycomb yet

Some app lifecycle changes

Java-level additions

Code to assist async data loading

More Video/Camera-to-3D integration

Touch events can span multiple activities

SDK API level 11+

15

NativeActivity

API level 9 (Gingerbread) adds NativeActivity

Supports

The entire app lifecycle

User input

All in native C/C++ code

This is key to minimizing or avoiding Java app code

Also, note the NDK’s native_app_glue

16

Dalvik (Java)-only Interfaces

Still Java-only:

Video playback

Camera

Android UI rendering

Lots of system-integration APIs

Research your “native only” decision carefully

17

The Circle of Life

Active
On top of the stack of visible activities

Does not mean the user is actively interacting with it…

Paused
Invisible; user has moved to home screen, another app in front, etc

(Rare) partially visible, but covered by another transparent or part-screen app

Stopped
App being closed

Completely invisible (likely no rendering surface)

But may transition to Active again without the process dying

Shut Down/Killed
Process no longer running

Active

Paused

Stopped

Killed

Pre-Honeycomb

only

18

High-level Concepts

Consider supporting:

Fast-path loading for OpenGL ES resources

Textures

Vertex/Index buffers

Makes it easy/faster to handle EGL_CONTEXT_LOST

Fine-scale “game save”

And do so incrementally

Makes it easy to support onPause/onResume

Only explicitly-initialized static data in native code

Makes it easy to handle being kept resident in memory after application

exit

19

Threading
Multi-core SoC’s like NVIDIA’s Tegra are the accepted norm

Threading is key to maximizing application performance

Thread your:

Physics

Particles

Game logic

Rendering

Networking

Prepare for the future as well

Don’t assume just 2 CPU cores…

20

Graphics Topics

Features, formats, flexibility

Textures

Geometry

Backbreaker THD:

Natural Motion Games

21

OpenGL ES Features: Be Flexible

EGL is the configuration, buffer and rendering context API that

sets up OpenGL ES

Write your own EGL configuration sorting and filtering code

Be ready to fall back if your preferred settings are not available

Minimize the number of “absolute requirements”

Log all configurations to debugging log for remote failure triage

Different platforms have different support for

Texture compression

Anti-aliasing

Color and depth buffer formats

22

Texture Compression

Texture compression is pivotal

ETC1 is almost universal

But has no alpha channel

Applications must use compressed textures for RGBA, too

So they must handle vendor-specific or non-universal formats:

DXT3/5 (S3TC)

PVRTC

ATITC

Generally, this means side-loading data per major platform

But the new <supports-gl-texture> tag allows the market to filter based on

available texture compression formats

http://developer.android.com/guide/topics/manifest/supports-gl-texture-element.html
http://developer.android.com/guide/topics/manifest/supports-gl-texture-element.html
http://developer.android.com/guide/topics/manifest/supports-gl-texture-element.html
http://developer.android.com/guide/topics/manifest/supports-gl-texture-element.html
http://developer.android.com/guide/topics/manifest/supports-gl-texture-element.html

23

Geometry
“Compress” vertex data wherever possible

Indexed primitives

Efficiently organized vertex-attribute streams

Use half-float, short int and signed byte attributes

Smaller vertices lead to lower memory traffic

Minimize independent attribute count

Pack attributes into 4-component attribute streams as tightly as possible

Vendetta

Online,

Guild

Software

24

VBOs, Dynamic Geometry

VBOs are GPU-friendly

They

Minimize driver intervention (i.e. CPU work) in rendering

Maximize API responsiveness

Give the driver the maximum info for optimization

Render static and dynamic geometry from VBOs

Mark static VBOs as such

Use round-robin sets of VBOs for dynamic geometry

Do not re-lock the same buffer you just used in a render call

Use glBufferSubData to replace dynamic geometry

25

Tegra 2

Advanced, mobile System-on-a-Chip (SoC)

Soul of the Machine: Low-power, top performance

10

26

Powered by Tegra 2

27

Development Kits

NVIDIA supports a range of development devices

These are in addition to the current and soon-to-be-available consumer

phones and tablets

Tegra 250 devkit

Small, non-enclosed board

External HDMI/VGA and input

Ventana devkit

Rough tablet form-factor

multitouch HD LCD, sensors

3 cameras, wifi, battery power

Next-gen devkit

Form-factor-accurate tablet with features similar to Ventana

28

Desktop OpenGL “ES2 Profile”

The Android emulator does not support GLES2 today

But even if it did, it assumes a partially-working Android app port!

But many Android-bound apps run on Windows/Linux already

EXT_create_context_es2_profile desktop GL extension to the

rescue!

Port the renderer to ES2 on desktop

Using the tools you know

Parallelizes the port process

Bringup on Android itself can include a known-good renderer

29

NVIDIA Debug Manager

Is an Eclipse plug-in that simplifies debugging native C/C++

Android applications on Tegra

Seamless Java and Native code debugging

Supports the latest version of the NDK as soon as possible after

each NDK update

Supported Operating Systems include

Windows 7

Mac OS X

Linux

30

NVIDIA PerfHUD ES

New and improved PerfHUD ES GPU profiling and debugging tool

for Tegra-based development kits

Client GUI supports

Windows

Mac OS X

Linux

Improved GL State tree viewer

Enhanced Draw Call state viewer with delta comparisons

31

NVIDIA Tegra Developer Zone

http://developer.nvidia.com/tegra

OS Support packs

SDK’s, demos, apps

Docs

Development Tools

Public support forums/community

Access to the Tegra board store

http://developer.nvidia.com/tegra

32

TegraZone

TegraZone makes it easy for consumers to

find the best apps for their Tegra-powered

devices

In-depth game coverage

Game reviews

HD trailers

Gameplay videos

Connected to social networks

33

Bang Bang Racing

Mike Clarke, Playbox Ltd.

34

Bang Bang Racing

Top-down racing

Reminiscent of retro racing games

35

Bang Bang Racing

1920 x 1080p @ 60fps, limited technical effects

Ripe for porting to lesser platforms

36

About Playbox

• Small-company mentality

• Relatively small-sized projects

• Projects could:

 Come from anywhere

 Be on any platform

• PC, PS2, Wii, X360, PS3, DS

37

Playbox Cyan Engine

• Everything abstracted

• Always chose OpenGl variants where possible

• Shaders based on Cg

• Binary data built per-platform via reflection/meta-data

• Scons build system

38

Porting To Android

Build System

 Cygwin is always a pain

 We use Linux environment in a VM

 Easy to get everyone up and running

 No licensing issues

 Playbox engine runs on PS3 and Linux

 gcc already supported in our scons scripts

 NDK didn't have STL support until r5

 r5 just provides STLport

 We used customised NDK from crystax.net

39

Physics

• Bang Bang Racing uses PhysX

• NVIDIA provided a Tegra port

• It just worked!

40

Mr. Dalvik, Why Do You Hate Me So?

• C++ code trapped behind the JNI

• Fundamentals need to bind with Java

• A nightmare to debug

• Have to use DDD alongside Eclipse

• Java kills the C++ callstack

• Getting it back is a pain

• NVIDIA's debug manager helps

41

Fundamentals

Graphics

 Relatively easy once the OpenGl context was created

 No glu functions (gluLookat etc.)

File I/O

 Just worked via stdio/fstream

 But can't be used

 Files should be read through Android package system

Threading

 Linux kernel uses pthreads

 Seems to work

42

Fundamentals

Input

 Must pass events through JNI

 Touch resolution matches tablet resolution

 See NVIDIA samples

Audio

 Not so bad once we worked it out

 Used our software mixer (not super-efficient, but works)

 We still have synchronisation issues

43

Code Samples are best

• Read NVIDIA's samples

• Somebody has probably solved your issues before

(SDL/ScummVM for Android)

• Don't forget the Android issues

• Suspend/resume

• File loading

• Android marketplace

• Package size limits

• Accelerometers spam the event queue

44

Renderer Issues

ES1

 Deal with the geometry/textures before the shaders

 Fixed function

 Easy to port but limited

ES2

 No fixed function

 Not far off what we already had for OpenGl

 Showed up problems in our pipeline/renderer

 We still had some glMatrix calls that had to go

45

Renderer Issues

• Chose GLSL instead of binary Cg shaders

• Expected to have to rewrite them anyway

• Much less forgiving than Cg

• Made a GLSL renderer for Win32 and Linux

• Used gDebugger to highlight problems

• Problems on different devices

 Fragment precision

 Screen Resolution

 Tegra has various extensions (e.g. S3TC support)

 NVPerfHud requires support of NVIDIA's timer extension

for full features

46

Tegra Optimisation

Lighting

 All per-pixel on PS3

 Put all lighting into Vertex Shaders

 Optimized redundancy

 Fragments now do very little

Shadows

 No change necessary

 Pre-rendered texture

 UV calculation

 Perfect for Tegra2

47

Tegra Optimisation

Geometry

 Setup for PS3

 Large pieces to reduce object count

 Chopped up for Tegra

Textures

 Alphas are very expensive

 Alpha-test is almost unusable

 Changed trees to geometry

 We use zero alphas instead of discard

 Removed HUD alphas

48

Touch Control

 Didn't want multi-touch if possible

 Complex controls need to be explained to the player

 Bang Bang Racing has a directional mode

 Mapped screen coordinates to joystick position

 Point and go

 Touch resolution matches tablet resolution,

not requested screen resolution

 Use Normalised values

49

Summary

• Target 2.3+ if you can

• Deal with Suspend/Resume as early as possible

• Use PhysX

• Do as much as possible in vertex shaders

• Keep the fragment shaders very simple

• Keep alphas to the absolute minimum

• Don't use alpha test if possible

• Run on different tablets

50

NVIDIA @ GDC 2011

CAN’T GET ENOUGH? MORE WAYS TO LEARN:

NVIDIA GAME TECHNOLOGY THEATER

Fri, March 4th @ NVIDIA Booth
Open to all attendees. Featuring talks and demos from leading developers at game studios and

more, covering a wide range of topics on the latest in GPU game technology.

MORE DEVELOPER TOOLS & RESOURCES

Available online 24/7 @ developer.nvidia.com

NVIDIA Booth

South Hall #1802
Details on schedule and to

download copies of presentations

visit

www.nvidia.com/gdc2011

http://www.nvidia.com/gdc2011

