
Operated by Los Alamos National Security, LLC for DOE/NNSA

LA-UR 10-04896

A Hybrid Programming Model

for Compressible Gas

Dynamics using OpenCL

Ben Bergen

Applied Computer Science (CCS-7)

Los Alamos National Laboratory

Marcus Daniels
Applied Computer Science (CCS-7)

Paul Weber
High-Performance Systems Integration (HPC-5)

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Why are programming models important?

Slide 3

The growing variety of heterogeneous and multicore HPC

computing architectures means that we need new tools and

programming models if we are to sustain code portability.

Power7 + Accelerator

NCSA Blue Waters

+

Cray Heterogeneous

AMD + nVIDIA

Sequoia

Blue Gene Q

Roadrunner
AMD + IBM Cell

Desktop
Multicore + Accelerator

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Some Challenges for Radiation Hydrodynamics on

Modern Computing Architectures

 Portability (#4)

 Current architectural diversity is challenging to support with single source base

 Optimization strategies often depend on underlying architecture

 Concurrency (#3)

 Hierarchy of parallelism: instruction-level, data, task, distributed-memory

 Need expressions of radhydro algorithms to address all of them

 Difficult to increase amount of data-parallelism

 Affects scalability (think Opteron-only use of Roadrunner)

 Task-level parallelism offers some promise

 Fault Tolerance (#2)

 MTBF could be less than the time it takes to write a checkpoint

 Data Motion (#1)

 Scalability will primarily be limited by power consumption

 Data movement = Power

Slide 4

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Distributed-
Memory

Task

Data + Task

Superscalar

Instruction-Level

SIMD

Hierarchy of Parallelism

Slide 5

FPU
Stg 0

Stg 1

Stg 2

Stg 3

Core

Architecture A Architecture B

Node

Node Node Node Node

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Distributed-
Memory

Task

Data + Task

Superscalar

Instruction-Level

SIMD

Hierarchy of Parallelism

Slide 6

FPU
Stg 0

Stg 1

Stg 2

Stg 3

Core

Architecture A Architecture B

Node

Node Node Node Node

Future systems will require

hierarchical programming

models for scalability, fault

tolerance and power efficiency

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Distributed-Memory

Task

Data + Task

Superscalar

Instruction-Level

SIMD

One Possible Model

Slide 7

MPI

Use different tools for inter and intra-node control

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

 Runtime Environment

 Work distribution, dynamic kernel compilation

 Application Programming Interface (API)

 Process launch, communication, synchronization

 Topology interrogation (resource detection)

 OpenCL C Kernel Language

 Low-level computational kernel language

 Subset of C with extensions

 Abstract vector types and intrinsics

What is OpenCL?

Slide 8

OpenCL is a framework for applications development

on multicore, manycore and accelerated architectures

for(i=0; i<N; i++) {

rho(i) = rho(i) + C*(rFR – rFL);

rhou(i) = rhou(i) + C*(ruFR - ruFL);

} // for

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Proof-of-Concept Application

 High-resolution direct Eulerian hydrodynamics solver

 MUSCL-Hancock Godunov method

 Solves two-dimensional Euler equations

 Structured grid with reflecting boundaries

 Surface plot shows density on z-axis

 Distributed-memory parallel with MPI

 Implemented with C++ and OpenCL

 Single-source implementation runs on all architectures

 SC09 Demo ran on five different architectures using OpenCL compilers form three

different vendors

Slide 9

AMD Multicore Intel Multicore IBM Multicore (P6) IBM Cell nVIDIA GPU

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

BladeCenter H System at SC09 (contributed by IBM)

Slide 10

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Exploiting Hybrid Architectures (Inter-Node)

Slide 11

Host

Scheduler

Device Device Device Device

Compute Ranks

Control Rank

 Demo Code: Synchronous model

 Control rank initiates all compute tasks

 Not a viable model: will not scale

 Enhancement: Asynchronous model

 Compute ranks accept requests from control rank,

but perform updates without external initiation

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Exploiting Hybrid Architectures (Intra-Node)

Slide 12

Device

Host

Scheduler

Device

Device

Disk I/O

Rendering

Computation

Host Process/Task Queue

Diagnostics/

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Compute Process Event Structure (Compute Ranks)

Advance
Simulation

Execute
Scheduled

Events

Check For
Control
Request

Execute
Dynamic
Events

Test For
Completion
(simulation)

Slide 13

Performance

Queue

Auxiliary

Queue

Auxiliary

Queue

Event Handler

Host
MPI +

OpenCL

MPI

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Functional Programming Model

 An OpenCL NDRange can be thought of as applying a functional over

an index space

 The algorithm must be data-parallel, i.e., OpenCL functional model

cannot honor lexicographical dependencies

 Standard data-parallel nested for-loop is a special case where the index

is determined by a mapping from logical N-dimensional space to the

index space

Slide 15

f a f (i) i I

for(k=0; k<Ny; ++k) {

for(j=0; j<Nx; ++j) {

c[k][j] = a[k][j] + b[k][j];

} // for

} // for

i M (k, j) k 0K Ny 1 , j 0K Nx 1

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Functional Expression of MUSCL-Hancock

Slide 16

ui
ui

i

i qi 1 qi

Taili i

x

2
i

fi uTaili uHeadi

 ̂
i i f i

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Kernel Fusion

 Original work used by-hand fusion

 Ugly, tedious and error-prone

 Excellent performance increases

 Kernel expression and optimization for functional programming

 GRA summer project (Ian Karlin will continue this work as a postdoc)

 Compiler used to fuse kernels to limit data motion and increase arithmetic intensity

 Project used POCC and Pluto to perform optimizations, e.g., array contraction

Slide 17

Input

Update A

Temporary

Update B

Temporary

Update C

Output

Input

Update A

Update B

Update C

Output

Unfused Fused

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

MUSCL-Hancock Numerical Support

Slide 18

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Kernel Fusion Improvement: Fermi

Slide 19

485

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Kernel Fusion Improvement: Magny-Cours

Slide 20

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Conclusions and Future Work

 Hybrid Programming Model

 Viable start for Exascale

 Leverages existing high-level code structure

 Utilizes existing tools

 Kernel Fusion

 Good strategy on all tested architectures

 CPU performance is better for small problem sizes

 Intuitive result: GPU data must traverse PCIe bus

 Better version leaves data on the device

 Only nearest-neighbor data moved off device

Slide 22

Heterogeneous designs like the IBM Cell and AMD Fusion

offer the best of both worlds. Future architectures will

likely converge to this paradigm.

