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Why are programming models important?
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The growing variety of heterogeneous and multicore HPC 

computing architectures means that we need new tools and 

programming models if we are to sustain code portability.
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Some Challenges for Radiation Hydrodynamics on 

Modern Computing Architectures

 Portability (#4)

 Current architectural diversity is challenging to support with single source base

 Optimization strategies often depend on underlying architecture

 Concurrency (#3)

 Hierarchy of parallelism: instruction-level, data, task, distributed-memory

 Need expressions of radhydro algorithms to address all of them

 Difficult to increase amount of data-parallelism

 Affects scalability (think Opteron-only use of Roadrunner)

 Task-level parallelism offers some promise

 Fault Tolerance (#2)

 MTBF could be less than the time it takes to write a checkpoint

 Data Motion (#1)

 Scalability will primarily be limited by power consumption

 Data movement = Power
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Future systems will require 

hierarchical programming 

models for scalability, fault 

tolerance and power efficiency
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 Runtime Environment

 Work distribution, dynamic kernel compilation

 Application Programming Interface (API)

 Process launch, communication, synchronization

 Topology interrogation (resource detection)

 OpenCL C Kernel Language

 Low-level computational kernel language

 Subset of C with extensions

 Abstract vector types and intrinsics

What is OpenCL?
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OpenCL is a framework for applications development 

on multicore, manycore and accelerated architectures

for(i=0; i<N; i++) {

rho(i) = rho(i) + C*(rFR – rFL);

rhou(i) = rhou(i) + C*(ruFR - ruFL);

} // for
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Proof-of-Concept Application

 High-resolution direct Eulerian hydrodynamics solver

 MUSCL-Hancock Godunov method

 Solves two-dimensional Euler equations

 Structured grid with reflecting boundaries

 Surface plot shows density on z-axis

 Distributed-memory parallel with MPI

 Implemented with C++ and OpenCL

 Single-source implementation runs on all architectures

 SC09 Demo ran on five different architectures using OpenCL compilers form three 

different vendors
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BladeCenter H System at SC09 (contributed by IBM)

Slide 10



Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Exploiting Hybrid Architectures (Inter-Node)

Slide 11

Host

Scheduler

Device Device Device Device

Compute Ranks

Control Rank

 Demo Code: Synchronous model

 Control rank initiates all compute tasks

 Not a viable model: will not scale

 Enhancement: Asynchronous model

 Compute ranks accept requests from control rank, 

but perform updates without external initiation
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Exploiting Hybrid Architectures (Intra-Node)

Slide 12

Device

Host

Scheduler

Device

Device

Disk I/O

Rendering

Computation

Host Process/Task Queue

Diagnostics/



Operated by Los Alamos National Security, LLC for NNSA

LA-UR 10-04896

Operated by Los Alamos National Security, LLC for NNSA

Compute Process Event Structure (Compute Ranks)
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Functional Programming Model

 An OpenCL NDRange can be thought of as applying a functional over 

an index space

 The algorithm must be data-parallel, i.e., OpenCL functional model 

cannot honor lexicographical dependencies

 Standard data-parallel nested for-loop is a special case where the index 

is determined by a mapping from logical N-dimensional space to the 

index space
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f a f (i) i I

for(k=0; k<Ny; ++k) {

for(j=0; j<Nx; ++j) {

c[k][j] = a[k][j] + b[k][j];

} // for

} // for

i M (k, j) k 0K Ny 1 , j 0K Nx 1
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Functional Expression of MUSCL-Hancock
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Kernel Fusion

 Original work used by-hand fusion

 Ugly, tedious and error-prone

 Excellent performance increases

 Kernel expression and optimization for functional programming

 GRA summer project (Ian Karlin will continue this work as a postdoc)

 Compiler used to fuse kernels to limit data motion and increase arithmetic intensity

 Project used POCC and Pluto to perform optimizations, e.g., array contraction
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MUSCL-Hancock Numerical Support
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Kernel Fusion Improvement: Fermi
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Kernel Fusion Improvement: Magny-Cours
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Conclusions and Future Work

 Hybrid Programming Model

 Viable start for Exascale

 Leverages existing high-level code structure

 Utilizes existing tools

 Kernel Fusion

 Good strategy on all tested architectures

 CPU performance is better for small problem sizes

 Intuitive result: GPU data must traverse PCIe bus

 Better version leaves data on the device

 Only nearest-neighbor data moved off device
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Heterogeneous designs like the IBM Cell and AMD Fusion 

offer the best of both worlds.  Future architectures will 

likely converge to this paradigm.


