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Executive Summary 

While the convergence of mobile phone and computing technology has been building for 
years, we are now starting to experience exciting and disruptive new applications and usage 
models as the next generation of mobile devices begin to deliver on the promise of a truly 
mobile computing experience.  

Consumer expectations for new mobile devices are very high. These new devices are more 
immersive and interactive than ever before, which makes the user hyper-aware of device 
performance. Consumers are demanding highly responsive user interfaces, uncompromised 
web browsing performance, visually compelling online and offline gaming experiences, and 
access to all of their content, while extending battery life beyond levels found in current mobile 
phones.  

The NVIDIA® Tegra™ 2 mobile processor is a multi-core system-on-a-chip (SoC) that is 
specifically designed to deliver the performance required for current and future mobile use 
cases. Implementing a powerful pipelined vertex and pixel processing architecture, the Tegra 2 
ultra low power GeForce™ GPU core includes several features that reduce power 
consumption and increase graphics quality.  

The GeForce GPU provides outstanding graphics performance for next-generation mobile 3D 
games, smooth HD video playback, exceptional online Flash gaming performance, and highly 
responsive GPU-accelerated user interfaces without compromising mobile power budgets. A 
high level block diagram of NVIDIA Tegra 2 SoC with the GeForce GPU core is shown in Figure 
1. 

The OpenGL ES 2.0 Graphics Processing Pipeline 

OpenGL ES is the standard Application Programming Interface (API) used by developers to 
write graphics applications for mobile devices such as smartphones, tablets, and portable 
gaming devices. The OpenGL ES API is a subset of the desktop OpenGL API specification, and 
defines a flexible and powerful low level interface between the graphics application and the 
GPU hardware. The most recent OpenGL ES 2.x specification targets modern GPU pipelines 
that are fully programmable, and replaces all fixed function elements of the API with 
programmable shading.  

Most mobile GPU architectures adhere to the OpenGL ES API standards and they primarily 
implement the logical processing pipeline as defined by the OpenGL ES API. This logical 
processing pipeline is illustrated in Figure 2.  
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Figure 1 NVIDIA Tegra 2 with GeForce GPU 
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Figure 2 OpenGL ES 2.0 Logical Graphics Processing Pipeline 

In order to display a scene as defined in a game or graphics application, the application 
developer must first use 3D modeling software to create various 3D object and character 
models. The objects and characters can each be comprised of grids of hundreds or thousands 
or even millions of connected triangles, depending on the desired level of geometric realism. 
For example, Figure 3 shows how a developer would define a dolphin as a grid of connected 
triangles.  

 

Figure 3 Triangle Mesh on a three dimensional image 

Next, the models can be used by 3D game software or other 3D applications and placed into a 
simulated three dimensional scene or “3D world”. The 3D world is defined using an X-Y-Z 
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coordinate system, and the 3D objects or characters are placed at specific locations in the 
world. Every triangle in an object is defined by its three vertices, and each vertex is comprised 
of groups of numerical values that represent its properties such as its XYZ location in the 3D 
world, color value (RGB), alpha transparency level, texture coordinates, normal vectors, and 
more. Groups of vertices that define a particular portion of an object, such as the forearm of a 
warrior character, are then grouped into a vertex buffer, which looks like a stream of raw 
vertices. A 3D scene will be comprised of many vertex buffers.  

The 3D software issues an OpenGL ES call to the GPU driver, pointing to the location of the 
vertex buffer in shared system memory, allowing the GPU to directly access and process the 
vertex data. The primitive processing stage of the OpenGL pipeline occurs in the GPU and 
converts inbound vertex data to a format and organization that is used by the GPU. Vertices 
are then passed to the Vertex shader, where a vertex shader program can run various matrix 
transforms and lighting calculations to move the vertices to new X, Y, or Z locations, or change 
lighting values, among other things. 

The transformed vertices are assembled into primitives such as triangles, lines, or points. The 
primitives are then converted by the rasterization stage into pixels fragments in preparation for 
the pixel shader stage. The pixel fragments are now in a 2D screen space format. The pixel 
shader stage will run a pixel shader program to process each pixel, possibly applying new 
lighting or color values, or applying textures, or performing various other operations to 
ultimately compute a final color value to apply to the pixel.  

In the classic OpenGL pipeline, Z-buffer testing will then be performed on each pixel to 
determine if is closer to the viewer’s eye than the existing pixel at the same screen location in 
the frame buffer. If the new pixel is determined to be closer to the viewer, based on its Z value, 
it replaces the existing pixel value in the frame buffer, but if it is behind the existing pixel on the 
Z-axis, it will be thrown away. (Note that the frame buffer may be located in the system memory 
space that is shared with the CPU, or it may be dedicated memory, such as used in most 
discrete graphics cards). If the visible pixel has an alpha value that indicates it is partially 
transparent, it will be blended with the existing pixel in the frame buffer at the same screen 
location. If anti-aliasing is enabled, pixel color values may be modified to create smoother 
looking edges to reduce the stair-stepping effect before writing to the frame buffer.  

Both the Vertex Shaders and Pixel Shaders defined by the OpenGL ES 2.0 specifications are 
fully programmable, enabling application developers to create complex and unique vertex and 
pixel shading effects. 

The GeForce GPU processing pipeline in the NVIDIA Tegra mobile processor is similar to that 
defined by the OpenGL 2.0 specifications, but it has several proprietary optimizations that 
enable it to deliver performance of a pipelined GPU architecture while remaining within the 
power budgets required for mobile devices. 
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Ultra Low Power GeForce GPU Architecture 

NVIDIA is the industry leader and recognized innovator in visual computing. NVIDIA’s new ultra 
low power GeForce GPU in the Tegra processor is derived from the desktop GeForce GPU 
architecture, but is specifically tailored to meet the growing demands of current and future 
mobile graphics use cases. 

Based on NVIDIA’s acclaimed GeForce GPU architecture, the ultra low power GeForce GPU in 
Tegra is highly customized and modified to deliver console quality gaming, while consuming 
ultra low power. The GeForce architecture is a fixed function pipelined architecture that 
includes fully programmable pixel and vertex shaders, along with an advanced texture unit that 
supports high quality Anisotropic Filtering.  

Figure 4 shows the graphics processing pipeline of the GeForce GPU in the Tegra mobile 
processor.  

 

 

Figure 4 GeForce GPU Architecture in NVIDIA Tegra 

The GeForce GPU includes four pixel shader cores and four vertex shader cores for high speed 
vertex and pixel processing. The GPU pipeline uses an 80-bit RBGA pixel format with FP20 
data precision in the pixel pipeline, and FP32 precision in the vertex pipeline. It also 
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implements a unique and proprietary Anisotropic Filtering (AF) algorithm that is superior to AF 
techniques used on many desktop GPUs. The architecture supports advanced features such 
as High Dynamic Range (HDR) lighting, Multiple Render Targets (MRTs), and non-power of two 
texture support. The architecture supports both DXT and ETC texture formats.  

Although the GeForce GPU architecture is a pipelined architecture similar to that defined by the 
OpenGL ES 2.0 standards, it includes several special features and customizations to 
significantly reduce power consumption and deliver increased performance and graphics 
quality. Some of the unique features implemented in the GPU core and NVIDIA Tegra 2 mobile 
processor include: 

• Early-Z support to filter out non-visible pixels 

• Integrated Pixel Shader and Blend Unit for programming flexibility and higher 
performance 

• Pixel Cache, Texture cache, Vertex, and Attribute Caches to reduce memory 
transactions 

• Unique 5x Coverage Sampling Anti-aliasing (CSAA) technique that achieves higher 
image quality at lower memory bandwidth 

• Advanced Anisotropic Filtering (AF) for high detail textures 

• A custom Memory Controller developed in-house that improves GPU performance and 
reduces power consumption 

• Numerous Power Management features for ultra low power consumptions. 

 

Early–Z Technology 

Modern GPUs use a Z-buffer (also known as depth buffer) to track which pixels in a scene are 
visible to the eye, and do not need to be displayed because they are occluded by other pixels. 
Every pixel has corresponding Z information in the Z-buffer. 

For review, a single 3D frame is processed and converted to a 2D image for display on a 
monitor. The frame is constructed from a sequential stream of vertices sent from the host to the 
GPU. Polygons are assembled from the vertex stream, and 2D screen-space pixels are 
generated and rendered.  

In the course of constructing a single 2D frame in a given unit of time, such as 1/60th of a 
second, multiple polygons and their corresponding pixels may overlay the same 2D screen-
based pixel locations. This is often called depth complexity, and modern games might have 
depth complexities of three or four or higher, where three, four, or more pixels rendered in a 
frame overlay the same 2D screen location.  

Imagine polygons (and resulting pixels) for a wall being processed first in the flow of vertices to 
build a scene. Next, polygons and pixels for a chair in front of the wall are processed. For a 
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given 2D pixel location onscreen, only one of the pixels can ultimately be visible to the viewer—
a pixel for the chair or a pixel for the wall. The chair is closer to the viewer, so its pixels are 
displayed. (Note that some objects may be transparent, and pixels for transparent objects can 
be blended with opaque or transparent pixels already in the background, or with pixels already 
in the frame buffer from a prior frame).  

Figure 5 shows a simple Z-buffering example for a single pixel location. Note that we did not 
include actual Z-buffer data in the Z-buffer location. 

 

 

Figure 5 Example of Z-buffering 

Z comparisons for individual pixel data as defined in the OpenGL ES2.0 logical pipeline happen 
after the pixels are processed by the pixel shader. The problem with evaluating individual pixels 
after the pixel shading process is that pixels must traverse nearly the entire pipeline to 
ultimately discover some are occluded and will be discarded. With complex shader programs 
that have hundreds or thousands of processing steps, all the processing is wasted on pixels 
that will never be displayed! More importantly, processing these pixels involve significant 
amount of transactions between the GPU and shared system memory in the case of mobile 
devices. Since system memory resides off-chip, the memory transactions consume significant 
amounts of power and can rapidly drain battery power. 
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What if an Early-Z technique could be employed to test Z values of pixels before they entered 
the pixel shading pipeline? Much useless work could be avoided, improving performance and 
conserving power.  

The GeForce GPU pipeline introduces an Early-Z stage in the pipeline that is placed before the 
pixel shader stage. The Early-Z implementation in the Tegra GeForce GPU is an optimized 
version of the implementation used in high end desktop GeForce GPUs. The Early-Z operation 
tests all the pixels for Z-depth and passes on to the pixel shader block only those pixels that 
are visible. By performing an Early-Z operation, the GeForce architecture fetches Z, color, and 
texture data only for the visible pixels that pass the Z-test. Early-Z is highly efficient and is 
accurately able to detect and discard hidden pixels.  

The main benefits of the Early-Z processing are that it not only significantly reduces power 
consumption by reducing the memory traffic between the GPU and off-chip system memory, 
but is also faster than other Z comparison algorithms. Early-Z is highly efficient and is able to 
identify and discard hidden pixels most of the time. But very rarely, for some special scenes, 
the programmer may require pixels to be hidden after the pixel shading is done. For these rare 
cases, the GeForce pipeline implements a late stage depth calculation and blend within the 
integrated pixel shader and blend unit. 

 

Integrated Pixel Shader and Programmable Blend Unit 

The OpenGL ES 2.0 logical GPU pipeline defines a separate stage for pixel blending that is 
performed after pixel shading. The fixed function blend unit defined by the logical pipeline 
supports only a limited set of blend operations. The GeForce pipeline integrates the blend unit 
with the pixel shader, making it a fully programmable blender. Due to the integrated design, the 
pixel shader can harness the processing power of the blender when there are no blend 
operations in progress. In addition, the programmable blender allows GeForce GPU to 
implement blend modes that are not defined by the OpenGL spec. For example, Adobe’s Flash 
Player uses several blend modes that are not supported by OpenGL, but the GeForce GPU is 
able handle these blend modes due to its programmable blender.  

 

Pixel and Texture Caches Reduce Memory Transactions 

The traditional OpenGL GPU pipeline specifies that pixel information such as texture, depth, 
color, and other attribute values are stored in system memory (or frame buffer memory). The 
pixel information is moved to and from memory during the pixel processing stage. This requires 
a significant number of off-chip system memory transactions, and thus consumes large 
amounts of power. The GeForce architecture has implemented on-chip pixel, texture, vertex, 
and attribute caches along with unique cache management algorithms to not only reduce the 
system memory transactions, but also maximize the utilization of these caches.  
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The pixel cache is used to store on-chip Z and color values of pixels and can be reused for all 
pixels that are accessed repeatedly, such as User Interface components. Also, due to good 
spatial and temporal locality of pixel color and depth data in many other graphics scene 
images, pixel caches deliver good cache hit ratios and lower the need to access system 
memory for data.  

Texture data has good spatial and temporal locality. A given pixel typically uses many of the 
same texture elements (texels) as an adjacent pixels during texture filtering operations such as 
bilinear filtering, and textures often remain the same for at least a few frames of the image. 
Thus caching texture data on-chip will result in good reuse of texture data and significantly 
reduce system memory accesses to fetch texture data.  

Designing efficient texture caches is extremely complicated and using generic cache 
management techniques would result in poor hit ratios. The pixel and texture cache designs of 
the GeForce GPU are based on over ten years of expertise in developing efficient caching 
techniques for NVIDIA desktop GPUs. The texture cache in the ultra low powe GeForce GPU 
delivers over ninety percent hit rate on average, while the pixel cache delivers fifty percent hit 
rates for many situations. Thus the GeForce GPU achieves significant power savings by 
caching large portions of color, Z, and texture data by minimizing accesses to system memory.  

 

Coverage Sampled Anti-Aliasing 

The NVIDIA GeForce GPU core in Tegra implements a unique anti-aliasing technique known as 
Coverage Sample Anti-Aliasing (CSAA). Aliasing is the stair-like jagged edges that appear on 
images where there should be smooth lines or edges, and anti-aliasing (AA) techniques are 
used in computer graphics to make these jagged lines appear smooth. Aliasing effects occur 
when high resolution images are displayed on lower resolution displays, or when higher 
resolution images are converted to lower resolution.  

Traditionally, GPUs have used AA techniques known as Multi-Sample AA (MSAA) and Super-
Sample AA (SSAA) to reduce Aliasing effects. These techniques require the pixels of the 
resolution image to be rendered multiple times (e.g. two times for 2x AA, four times for 4x AA 
etc.), creating smooth lines and edges by calculating a final pixel from multiple rendered 
samples. (When anti-aliasing is enabled, a pixel region is divided into a number of sub-pixel 
regions that correspond to the anti-aliasing level, such as four sub-pixel regions for 4xAA, and 
each sub-pixel region includes a sample location that can be are used to determine polygon 
coverage for calculating final pixel color). Due to multiple rendering passes, the classic anti-
aliasing techniques use significant amounts of memory bandwidth and are not suitable for 
mobile GPUs, where power consumption is of paramount concern. 

CSAA can produce anti-aliased images that rival the quality of higher level MSAA, while 
minimizing the accesses to system memory. CSAA introduces the concept of a new sample 
type -- a “coverage sample” -- that is used to improve the accuracy of coverage calculations 
when determining the percentage a polygon covers a pixel’s area. Note that multiple polygon 
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fragments can cover and overlap the area of a single screen pixel. In some cases, very small 
polygons may actually be smaller than a pixel’s area, and only cover a portion of the pixel. 
When processed sequentially in a graphics pipeline, portions of multiple polygons, each with 
different color attributes, may overlap and contribute to the final color of a single pixel in a 
frame.  

Coverage samples differ from previous AA techniques where coverage was always inherently 
tied to a “real” sample type. In SSAA, each real sample has its own unique color and Z values, 
and in a 4xAA case, the shader program runs four times, and four textures are fetched – one 
for each sample (or more in the case of multi-texturing). With 4xAA, the frame buffer is 4x 
larger than the case of not using anti-aliasing, and is down-filtered to create the final pixel 
color.  

MSAA reduces the shader overhead of the anti-aliasing operation by fetching a single texture 
color values and applying that single color to all samples, thus reducing shader execution and 
texture fetch processing. Z/stencil values must still be unique in MSAA to ensure proper Z-
ordering of the samples.  

CSAA further optimizes the AA process by decoupling simple coverage samples from 
color/z/stencil/coverage samples, thus reducing bandwidth and storage costs compared to 
MSAA and SSAA. CSAA uses more coverage samples to calculate coverage levels of the 
polygons within a given pixel area, thus creating a higher quality AA effect without incurring the 
memory and power costs of processing additional real color and Z samples.  

The GeForce GPU core in the NVIDIA Tegra 2 mobile processor supports 5x CSAA (one real 
sample and four coverage samples) delivering incredible image quality enhancements at very 
low memory transaction and power consumption costs.  

Advanced Anisotropic Filtering 

Anisotropic filtering is a technique employed to enhance the image quality of textures on 
surfaces that are at oblique viewing angles. Each pixel on the screen typically requires multiple 
texture elements to be fetched from texture maps in memory, filtered, and applied to the pixel 
to change its color. When viewing a surface head-on, perpendicular to the camera or viewer, 
an equal number of texture elements are usually sampled per pixel using a square sample 
pattern. However, at extreme viewing angles when the image on the screen extends further 
along one axis than another, taking equal number of samples in each axis from the texture map 
would result in texture blurring along the axis that stretches out into the horizon.  

The image on the left in Figure 6 shows a runway that stretches out into the horizon, and you 
can see that the texture detail is blurred for the sections of the runway that are closer to the 
horizon. Anisotropic filtering techniques intelligently take more texture samples along the axis 
that is stretched out and preserves the texture details for textures along this axis. The image on 
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the right in Figure 6 shows the runway image that has Anisotropic Filtering applied, and you 
can see that the runway texture detail has improved significantly.  

 

Figure 6 Improved texture quality from Anisotropic Filtering 

The GeForce GPU in NVIDIA Tegra 2 processor employs a very sophisticated Anisotropic 
Filtering technique that delivers texture quality enhancement similar to that on high end NVIDIA 
Fermi GPU architecture-based desktop GPU cards. The GeForce GPU supports up to 16x 
Anisotropic Filtering. It uses adaptive filtering algorithms and efficient texture cache 
management techniques to deliver high texture quality without significantly increasing memory 
transactions.  

The advanced AF and CSAA features of the NVIDIA Tegra 2 GeForce GPU will deliver 
outstanding graphics quality that is far superior to that delivered by competing solutions. As 
screen sizes and resolutions of mobile devices increase, graphics quality will greatly influence 
the user experience, and NVIDIA Tegra 2 mobile processor will deliver the best game play and 
visual experience for modern mobile games and applications. 

Optimized Memory Controller 

NVIDIA Tegra 2 mobile processor includes GPU and Memory Controller (MC) cores that have 
been completely designed from the ground-up based on over a decade of expertise in building 
highly optimized GPU and memory controller cores. The performance of GPU cores is highly 
dependent on the efficiency of the MC in delivering bandwidth, and also the latency 
requirements for graphics processing. Due to the in-house development of both the GPU and 
the MC, the MC is highly tuned to the specific requirements of the GeForce GPU, and includes 
several optimizations that enhance GPU performance and reduce power consumption.  

Some of the key optimizations that are included in the MC controller design are: 

AF OnAF Off
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• Dynamic Clock Speed Control (DCSC): DCSC enables the memory controller to 
quickly ramp up operating frequency in response to advance indicators from the GPU 
core for system memory accesses, and quickly ramp down operating frequency to a 
power saving levels when the GPU has completed its memory accesses. Due to the 
close knit in-house design process, the MC can directly tap into GPU core hardware to 
proactively anticipate GPU needs and manage its operating levels to meet GPU needs 
(unlike competitive solutions that use cobbled together mixed-vendor CPU and GPU 
cores). 

• GPU centric Memory Arbitration: System memory is one of the most valuable 
resources in a mobile processor. Various cores such as the CPU, GPU, Video, and 
Audio cores require responsive and high bandwidth access to system memory. The MC 
implements advanced arbitration schemes to efficiently grant multiple clients access to 
system memory.  

The MC core has advanced knowledge of the type and urgency of memory access 
requests coming in from a GPU client and implements a very fine tuned arbitration 
scheme that delivers high bandwidth for bandwidth-hungry render and geometry 
requests, and ultra low latency to service high priority latency-sensitive display and 
CPU requests. The MC is also aware of the priority of each request generated in the 
GPU core, and is able to further optimize its performance to meet the demands of these 
requests.  

• GPU Request Grouping: Off-chip system memory devices are capable of keeping 
open only a certain number of memory banks at any given time. When requests access 
regions of memory that are not contained within currently open banks, the MC has to 
close the currently opened banks, and then activate new banks that include the desired 
memory cells or regions. This process not only impacts latency and bandwidth, but also 
requires higher power consumption.  

Rather than initiate multiple different memory requests that access random banks in 
different parts of the memory subsystem, the GeForce GPU is aware of the current 
system memory configuration, and optimizes access patterns. The GPU can group 
together memory requests that access the same memory bank. The MC controller can 
also re-order independent memory requests into groups based on their memory bank 
access pattern. Such features deliver higher efficiency memory accesses, and reduce 
power consumption by limiting frequent memory bank switching. 

 

Advanced Power Management 

The GeForce GPU core implements several advanced power management techniques to 
reduce power consumption including:  

• Multiple Levels of Clock Gating: The GPU implements several levels of clock gating 
that shut off clocks during idle conditions. A system level power control algorithm 
controls the power and clocking of all eight cores in the NVIDIA Tegra 2 processor. 
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When the power control logic detects an idle GPU core, it clock-gates the main trunk 
clock that feeds into the GPU, effectively driving dynamic power consumption of the 
GPU to almost zero milli-watts. When the power controller detects the system is in 
standby mode, it power-gates the GPU core, reducing its power consumption to nearly 
zero.  

• Local Power Management Features: The GPU core has several local power 
management features to further reduce power consumption. It implements several 
function-level clock gating mechanisms that can clock-gate various different idle blocks 
within the GPU core. For example, when the pipeline isn’t performing any vertex 
shading tasks, the vertex shader is clock-gated and put in a low power state until the 
next vertex shading commands are received. Similarly, when the pixel shader is working 
on tasks such as math calculations that do not require texture fetches, the texture units 
can be clock-gated. Also, if the GPU is just refreshing the device display and not 
actively rendering, the memory controller can opportunistically put system memory into 
low power state.  

• Display Request Grouping: The GPU groups multiple display requests, and issues 
these requests in bursts to system memory. Then the GPU informs the memory 
controller (via timers) about the timing of the next request burst. In the idle period 
between GPU display request bursts, the memory controller looks for opportunities to 
aggressively and dynamically put system memory in low power states. 

• Power-Optimized Transistor Design: The GeForce GPU core was also optimized at 
the transistor level for ultra low power consumption. Lower leakage transistors are used 
for blocks that are not timing sensitive, and higher speed transistors are used for critical 
paths that require high speed operation. Thus the GeForce core is able to achieve low 
power consumption without compromising performance.  

• Dynamic Voltage and Frequency Scaling (DVFS): The Tegra 2 mobile processor also 
implements a highly advanced chip-level DVFS technique that at any given time is able 
to control the clock frequencies of six main system clocks and the voltage levels of up 
to two voltage rails. The clocks and voltage rails that are under DVFS control can be 
selected through software-controlled settings.  

The basic concept of DVFS is to vary the core frequency and voltage of various 
processing units in the processor to control power consumption. The power consumed 
on a semiconductor chip is directly proportional to the operating frequency, and is also 
proportional to the square of the operating voltage.  

When the processor is not working on any tasks, the frequency and voltage levels can 
be dropped to lower levels to greatly reduce idle power consumption. When an 
incoming task is detected by any one of the eight cores in NVIDIA Tegra, the event is 
reported to the global DVFS control block and the frequency and voltage levels are 
immediately increased to the appropriate operating values to ensure higher 
performance. The DVFS software intelligently raises the voltage and frequency only up 
to a level that is required to deliver the performance demanded by the application. The 
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DVFS algorithm has very fine control over the frequency levels, and can increase or 
decrease frequency in steps as small as 1 MHz.  

 

User Benefits 

Higher Performance for Mobile Gaming 

Mobile Gaming is a rapidly growing use case, and recent market study data showed that the 
number of users playing games on smartphones has increased by sixty percent in the 2009-
2010 time period1

The growing popularity of gaming on mobile devices has attracted top PC game developers, 
and many PC-class games such as Call of Duty, Brothers In Arms, and Rage are now available 
on mobile devices. Major PC game developers are investing heavily in mobile gaming, and 
competition among game developers will drive the creation of visually rich games that use 
advanced features such as shadows, particle effects, lighting, and physics.  

. In addition, many games played on mobile devices today have evolved from 
simple 2D versions, to using complex 3D rendering techniques. Many visually rich and 
compelling games from the PC and console platforms are becoming available for mobile 
devices.  

NVIDIA Tegra 2 is the only mobile processer that delivers console quality gaming. Due to the 
desktop GPU roots of the GeForce GPU core in Tegra, the hardware pipeline of the GPU is 
optimized and prepared to handle the performance requirements of mobile games that use PC 
and console quality graphics features. The similarities between the GeForce GPU architecture 
and its more powerful desktop and console counterparts will also enable developers to easily 
develop games that are capable of running across multiple platforms. Developers can employ 
the same rendering techniques for all platforms and then add appropriate graphics detail and 
complexity for each specific platform.  

Companies such as Trendy Entertainment are developing multi-player, cross-platform games 
by leveraging the commonality between the NVIDIA GeForce GPUs in PCs, Sony Playstation 3, 
and NVIDIA Tegra 2 based mobile devices.  

Benchmark results on popular mobile games such as Need for Speed: Shift, Epic Citadel, 
Raging Thunder, and Galaxy on Fire show that these games run twenty to fifty percent faster 
on the NVIDIA Tegra 2 processor than on the fastest available tiling-based mobile GPU 
processors. These games currently do not employ many advanced graphics features, and the 
performance advantages of NVIDIA Tegra 2 will further increase when advanced graphics 
features are implemented in such mobile games.  

                                                           
1
www.comscore.com/Press_Events/Press_Releases/2010/4/Smartphone_Adoption_Shifting_Dynamics_of_U.S._Mobile_Gaming_Market 

http://www.comscore.com/Press_Events/Press_Releases/2010/4/Smartphone_Adoption_Shifting_Dynamics_of_U.S._Mobile_Gaming_Market�
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Figure 7 GeForce GPU Performance on Mobile games2

 

 

Benefits of Hardware Accelerated Adobe Flash 

The Adobe® Flash® Player is a widely used Web browser plug-in that is installed on over 99% 
of desktop PCs. Most websites use Flash to deliver a wide variety of rich content, including 
videos, animation, and games. Some of the most popular Web-based games such as 
Farmville®, Bejeweled® and Plants Vs Zombies® are delivered via the Flash platform. Popular 
video streaming sites such as Youtube.com®, Vimeo.com®, Hulu®, and TV.com® use Adobe 
Flash platform to deliver video content, and most Web sites have rich interactive content that is 
based on Flash animation.  

The recent release of the mobile version of Adobe Flash Player enables users to access Flash 
based content and view full featured PC-like versions of Web sites on their mobile devices. 
However, processing Flash-based content is a performance intensive task and takes up a 
significant amount of CPU processing power. Browsing a Flash-enabled website on a mobile 
device could consume most of the CPU processing power, leaving very little for other 
applications. If a mobile device has applications such a streaming audio, social networking, 
and email apps running in the background, the CPU may not have sufficient processing power 
to process all tasks, and thus users may notice significant stuttering or slow performance on 
Flash-based Web browsing, video playback, or gaming.  

                                                           
2 Data collected on NVIDIA Tegra 2 Dev Platform and Samsung GalaxyS phone at 800x480 resolution, Android 2.2 
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Even if there are no background tasks, some Flash games such as RaidenX and Floodrunner 
are so intensive that running these on the CPU results in poor performance. In addition, the 
CPU is a general-purpose processor and is highly inefficient when processing content such as 
video and games delivered via Flash. The CPU not only struggles to process Flash-based 
content, but also consumes large amounts of power, which decreases battery life.  

The NVIDIA Tegra 2 mobile processor addresses this problem by processing nearly all Flash-
based rendering tasks on the GeForce GPU core. 

 

 

Figure 8 GPU Flash Accelerated Pipeline 

Since Flash video playback and gaming involves graphics and pixel processing, the GPU core 
is better equipped to process these tasks efficiently and at high performance. NVIDIA has 
worked closely with Adobe to implement a mobile Adobe Flash Player that completely offloads 
all Flash-based video and game content processing to the GeForce GPU. 

Offloading the Flash processing to dedicated hardware that is designed specifically for 
graphics tasks not only delivers much higher performance, but also improved power utilization. 
Another significant benefit is that the CPU is freed up to handle other applications.  

The following two diagrams illustrate the processing pipeline for Flash video playback and 
Flash-based graphics. The blocks highlighted in green show the processing steps that are 
hardware-accelerated and processed in the GeForce GPU. 

GPU AcceleratedGPU AcceleratedGPU Accelerated

Screen RenderingComposition

Bezier Graphics

Video 



19 
 

 
Figure 9 Acceleration of Flash graphics on Tegra GeForce GPU 

 

Figure 9 shows how the OpenGL ES pipeline is fully leveraged to accelerate Flash-based 
graphics effect. A “style” shown in the diagram describes how to render the inside of a Flash 
object on the screen. It could be a solid color, gradient fill, an image or video applied to the 
object, etc. The style also describes textures to apply, or which OpenGL ES vertex and pixel 
shaders to be used to achieve the desired rendering effect. Vertices are the basic building 
block of the 3D graphics pipeline, and are used to describe the outlines of the Flash objects.  

The Figure 9 diagram flow assumes a complex Flash scene, where a variety of filter affects are 
applied in a multi-pass process. Examples of filters include blurring an image, edge detection, 
applying highlights to an image, etc. Filter effects are implemented as fragment shaders, and 
also rendered with the GPU using OpenGL ES. Some complex scenes can be made up of 
more than 10 filter effects. A GPU can chew through that pretty quickly. Farmville, for example, 
applies a lot of filters. 

The result of the rendering step is the final image, still stored in GPU memory. If capable, the 
browser can pull the image straight from GPU memory for further compositing into the web 
page. That compositing can also be done by the GPU, which will be an additional performance 
benefit. 
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Figure 10 Flash Video Acceleration on NVIDIA GeForce GPU core 

Figure 10 shows the video acceleration path in Flash. A video file first gets parsed and stored 
as a coded video stream inside a Flash player buffer. The coded video stream is then 
transferred to a Tegra hardware buffer where dedicated video hardware will process it, and 
produce a YUV image for each video frame. As the final rendering is always in RGB, the YUV 
image is converted to RGB color space by another Tegra hardware block. The resulting series 
of RGB images can simply be used as another rendering style, and rendered using OpenGL as 
textured quads.  

In Figure 11 below, results from GUIMark2®, a popular Flash benchmark, show that a 
hardware-accelerated Flash player running on a NVIDIA Tegra 2 based mobile device delivers 
2x to 3x the performance of a device that utilizes the CPU for processing Flash content. 
Performance measurements on popular online Flash-based games such as RaidenX, Murloc, 
Crush the Castle 2, and Farmville show that hardware-accelerated Flash on NVIDIA Tegra 2 
delivers almost 2x the performance of competing devices that use the CPU to process Flash 
content.  
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Figure 11 GUIMARK2 Flash Benchmark Results3

 

 

Figure 12 Flash Gaming Performance on GeForce GPU 

                                                           
3 Data collected on NVIDIA Development Platform and Samsung GalaxyS phone at 800x480 resolution on Android 2.2 
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Highly responsive User Interfaces 

Touch is one of the most natural user interface mechanisms, and most smartphones today 
support touch-based user interfaces. The availability of multi-touch enabled touch screen 
displays has further increased the variety of touch-based interactions that are possible with 
mobile devices. Touch-based displays offer the benefit of natural interactivity that permits 
users to directly touch and interact with elements that they see on a display. However, touch-
based displays also make the user highly sensitive to responsiveness and visual fluidity. 
Touch-based interactions with mobile devices could range from basic operations such as 
selection, scrolling, zooming, and panning, to advanced multi-touch operations within games 
and applications.  

Due to the heightened user sensitivity to touch-based interactions, it is critical that mobile 
devices are able to deliver a highly responsive and fluid user interaction experience, even 
under heavy multitasking conditions. User interaction tasks on most mobile processors are 
processed on the CPU and offer fairly acceptable performance but under heavy multi-tasking 
conditions, the CPU is usually heavily loaded, and may not have the processing bandwidth to 
handle all requests, which could easily stall the processing of some tasks. Users may not 
notice these stalls on most background tasks, but will immediately take notice if their phone 
does not quickly respond to their touch inputs. The CPU has to detect user input, process the 
task requested by the user, and quickly display on screen the response to the user input. This 
can be as simple as user scrolling down a menu tree, or as advanced as using multi-touch 
inputs to rotate an image on a map.  

Similar to Adobe Flash content processing, touch interactions trigger a significant amount of 
pixel processing, and most of the pixel processing for the user interface (UI) in current 
operating systems is performed by the CPU. Therefore to deliver fluid and snappy UI 
responsiveness even under heavy multi-tasking conditions, mobile processors must either 
have sufficient headroom in CPU processing power, or offload some of the UI-related pixel 
processing to a GPU core that is optimized to handle such tasks. The NVIDIA Tegra 2 mobile 
processor has a dual core ARM A9 processor that provides almost twice the processing power 
of competing single core CPU based mobile processors, and delivers outstanding user 
responsiveness and fluidity even in the absence of GPU-accelerated UI processing.  

As mentioned, most mobile operating systems currently use the CPU to handle the pixel 
processing for user interfaces, and therefore cannot offload this task to the GPU. It is highly 
likely that future versions of mobile operating systems will enable hardware acceleration of user 
interfaces, and the Tegra 2 mobile processor will be capable of completely offloading all UI 
pixel processing to its GeForce GPU.  

The transition to GPU-based UI rendering happened on PCs with the introduction of Windows 
Vista® and its Aero interface, and was further enhanced with Windows 7®. NVIDIA GeForce 
GPUs flawlessly accelerated the visually rich Windows Vista and Windows 7 UIs, and delivered 
a highly responsive experience. The GeForce GPU core of the NVIDIA Tegra 2 processor is 
similar in architecture to its desktop counterpart and is equipped today to deliver outstanding 
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user responsiveness and visual interaction for upcoming releases of hardware-accelerated 
mobile operating systems. 

 

Premium Content for Tegra Based Mobile Devices 

NVIDIA has the processor industry’s largest dedicated Content Development team that works 
closely with game developers to optimize games so they deliver the best performance and 
quality on NVIDIA GPUs. NVIDIA is leveraging its Content Development team to support the 
development of high performance, high quality games and apps for mobile Tegra 2 devices. 

High quality game content can be defined by the following qualities: 

• Visually realistic looking scene objects and character that use much more geometry, 
higher resolution textures, and complex shaders. 

• Highly interactive gaming that employs larger number of characters on screen and more 
instances of independent animation. 

• More challenging games that use advanced Artificial Intelligence (AI) processing with 
complex worlds and player management. 

• Premium levels that are only accessible via Tegra-based devices and additional game 
character equipment and special moves that are unlocked on Tegra based devices. 

The following two figures illustrate some of the enhancements that are being built into games 
to deliver a premium experience. Figure 13 illustrates the changes implemented in the popular 
Fruit Ninja game. The original versions of the game use lower quality geometry and textures, 
resulting in the fruit looking more like lumps of color than real fruit. Through optimizations the 
game developer is able to use higher geometry and more detailed textures for the fruit to 
deliver a more realistic visual experience.  
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Figure 13 Fruit Ninja Enhancements  

The figure below illustrates the enhancements done in the premium version of Backbreaker. 
Using the higher processing power, developers are able to implement real and dynamic 
shadows, and higher quality textures. 

  

 
Figure 14 Enhancements to textures and higher quality shadows in Backbreaker 
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Conclusion  

The smartphone is quickly becoming an essential computer. Consumers are hyper-aware of 
responsiveness, performance and visual quality of their mobile devices and are demanding 
highly responsive user interfaces, an uncompromised full-featured web browsing experience, 
visually compelling online and offline gaming, and access to all their content in a form factor 
that provides cell phone-like mobility and battery life.  

Mobile gaming is a rapidly growing use case and it is estimated that end-user spending on 
mobile gaming will grow from $ 5.6 billion in 2010 to $11.4 billion worldwide in 20144

As the resolution of mobile devices continues to increase, they will need GPUs that not only 
handle the increased pixel processing loads, but also remain within mobile power budgets. 
Higher resolutions and display sizes will drive consumer demand for applications that employ 
higher graphics quality features such as complex lighting, shadows, anti-aliasing, higher detail 
textures, and more. 

. Adobe 
Flash based online gaming is resurging due to the tremendous growth of Farmville and other 
social games that run on the Flash platform. The vast majority of streaming videos available on 
the Web are delivered via the Flash platform, and users are spending more time on the Web 
watching videos than browsing text-based websites.  

The GeForce GPU in NVIDIA Tegra 2 is tailored to meet the growing demands of current and 
future mobile use cases. The high performance architecture has several unique optimizations 
that not only deliver near console quality graphics, but also ultra low power consumption. 
Features such as Early-Z, pixel caches, texture caches, integrated pixel shader & blender, 
CSAA, 16x AF, and an optimized memory controller deliver outstanding visual quality and 
scalable performance, while keeping power consumption within mobile budgets. Advanced 
power optimizations such as multi-level clock gating, DVFS, and the use of low leakage 
fabrication processes delivers industry-leading battery life for NVIDIA Tegra 2 based mobile 
devices.  

The GeForce GPU delivers outstanding graphics quality for mobile gaming, silky smooth online 
Flash video streaming experience, excellent Flash gaming experiences, and highly responsive 
User Interfaces. NVIDIA Tegra 2 is the first mobile processor that is capable of playing multi-
platform console-class games without compromising visual quality or game play experience. In 
addition, the TegraZone Marketplace application created specifically for NVIDIA Tegra 2 based 
mobile devices will enable users with access to premium high quality mobile games and 
applications specifically optimized to take advantage of the superior graphics capabilities of 
the GeForce GPU.  

Almost all of Adobe Flash software pipeline is now being accelerated by the GeForce GPU core 
on the NVIDIA Tegra 2 processor. This not only delivers smooth Flash based video playback, 
but also significantly higher performance on Flash based online games such as Farmville, 

                                                           
4 http://www.gartner.com/it/page.jsp?id=1370213 

http://www.gartner.com/it/page.jsp?id=1370213�
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Crush The Castle 2, and Floodrunner 2. The hardware acceleration of Flash is available today 
only on NVIDIA Tegra 2-based mobile devices, and these devices deliver a far superior user 
experience than competing mobile processors that use CPU-based software processing of 
Flash workloads.  

The size and resolution of mobile device displays have rapidly increased over the last couple of 
years and the growing popularity of tablets will further push the resolution and display sizes to 
be close to that of laptop PCs. These current and future mobile devices will need GPUs that 
can not only handle the increased pixel processing loads, but also remain within mobile power 
budgets. Higher resolutions and display sizes will drive consumer demand for applications that 
employ richer PC-like graphics quality employing complex lighting, shadows, anti-aliasing, 
higher quality textures, and more.  

The GPU core in the NVIDIA Tegra 2 mobile processor is based on the proven and successful 
GeForce architecture and is built for the future with both the performance and power efficiency 
to deliver an outstanding visual experience that can easily scale with increases in resolution 
and graphics application complexities.  
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