The Visual Computing Company
For two decades, NVIDIA has pioneered visual computing, the art and science of computer graphics. With our invention of the GPU — the engine of modern visual computing — the field has expanded to encompass video games, movie production, product design, medical diagnosis and scientific research. Today, visual computing is becoming increasingly central to how people interact with and enjoy technology.
NVIDIA targets three main verticals: gaming, professional visualization, and high performance computing & data centers. For each, we offer a platform of processors, software, tools, marketing, expertise and, increasingly, connected services. We leverage the work we do for these markets by selling components and licensing IP to leading OEMs who wish to create smart devices differentiated by rich graphics.
NVIDIA is built on a foundation of leadership in visual computing. We attract the best minds in the field. And we build technologies and products that span its entire spectrum — from fundamental inventions, to processors incorporating our GPUs, to system components, to fully integrated systems.
Blockbuster games consistently outsell the biggest Hollywood films — Call of Duty: Ghosts reached $1 billion in sales in its first 24 hours. The overall PC gaming market is expected to reach $26 billion in 2014. NVIDIA® GeForce® GPUs are the engines behind the creation and enjoyment of this thriving market.

Source: Activision, DFC Intelligence
GeForce Experience™ is NVIDIA’s hub for next-gen PC gaming. To date, 25 million gamers have installed the application, which automatically optimizes games and provides notifications of the latest driver updates. The ShadowPlay™ feature allows gamers to capture their greatest moments and easily broadcast to Twitch, the leading gaming video platform with 45 million viewers per month. Gamers can also tap into GameStream™ to play PC games on the SHIELD gaming portable.

Source: Twitch
NVIDIA SHIELD™, a gaming and entertainment portable, is a catalyst for the burgeoning Android gaming market, the fastest growing segment. SHIELD is the best Android gaming device available. It’s a platform that Android game developers can target. And it’s a platform that gamers can count on since it’s made by NVIDIA, a company that has been dedicated to gamers for 20 years.
With NVIDIA GRID™, gamers have the freedom to play the most graphics-intensive games from the cloud on any display. By solving the “lag” issue that has hindered cloud gaming, GRID promises to make game streaming as convenient and common as renting a movie online. It’s technically challenging, but NVIDIA is one of the few companies in the world that can build a “Netflix for gaming.”
NVIDIA Gaming is built on three primary platforms — GeForce for PCs, SHIELD for Android, GRID for cloud. For each, we’ve developed software and services that ensure NVIDIA-based products are optimized for peak performance. Across platforms, we develop game technologies that enrich the gaming experience. And our GameWorks program offers access to some of the world’s most talented visual effects artists, as well as the library of algorithms and tools they’re constantly building.
Our invention of a programmable processor more than a decade ago expanded our reach into professional graphics. Today, NVIDIA® Quadro® powers 80% of the world’s workstations and nearly every major design tool uses its suite of tools. Quadro enables industrial designers — who rely on photorealistic renderings like this one of the McLaren P1 — to create their designs without physical models.

Source: IDC
Visual computing is opening up new horizons for moviemakers. NVIDIA is playing a major role. 2014 marked the 5th year in a row when all films nominated in the Academy Awards “Best Visual Effects” category were created on Quadro.
Broadcasters use visual computing to boost live coverage with augmented reality. Here, Monday Night Football is enhanced with special effects created using Sportvision’s 1st and Ten® and Pass Track systems. Graphics generated by Quadro blend in seamlessly with the action.
With the GRID Visual Computing Appliance (VCA), design firms, film studios and other businesses can now give their creative teams access to graphics-intensive apps with uncompromised performance, flexibility and simplicity. VCA runs graphics-intensive applications — such as those from Adobe, Autodesk and Dassault Systèmes — and sends the graphics output over the network to be displayed on a client computer.
Enterprises are in the midst of a seismic shift. Employees bring their own devices to work, multiple operating systems tap into distinct services, and mobile access is essential. Leveraging our GPU expertise, we’ve invented new technologies that deliver amazing graphics from the cloud to any device. We call it GRID. Today, Cisco, Dell, Fujitsu, HP, Hitachi and IBM offer GRID-based servers while Citrix, Microsoft and VMware offer GRID-enabled software.
Tesla® GPUs are revolutionizing parallel computing and putting the power of GPUs into the data center. NVIDIA GPUs power 85% of accelerated HPC systems, including the Titan supercomputer at Oak Ridge National Labs, where 18,000 GPUs do parallel computation to model climates and simulate new materials at unprecedented scale. Top enterprise companies use Tesla to tackle big data analytics, image processing, and machine learning.

Source: Intersect360 Research
Tesla GPUs power the top 10 most energy-efficient supercomputers on the latest Green500 list. The only other architecture ever to have swept the top 10 spots on the list is IBM’s legendary BlueGene system. Crowned the greenest supercomputer, the Tsubame-KFC system at the Tokyo Institute of Technology hit a record 4.5 gigaflops per watt.

<table>
<thead>
<tr>
<th>Green500 Rank</th>
<th>MFLOPS/W</th>
<th>Site*</th>
<th>Computer*</th>
<th>Total Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4,003.17</td>
<td>GSIC Center, Tokyo Institute of Technology</td>
<td>TSUBAME-KFC-LX11+GPU104Ra-1G Cluster, Intel Xeon E5-2690v2 2C 2.10GHz, Infiniband FDR, NVIDIA K20x</td>
<td>27.78</td>
</tr>
<tr>
<td>2</td>
<td>3,031.66</td>
<td>Cambridge University</td>
<td>Rhea - Dell T620 Cluster, Intel Xeon E5-2690v2 2C 2.60GHz, Infiniband FDR, NVIDIA K20</td>
<td>52.82</td>
</tr>
<tr>
<td>3</td>
<td>3,517.84</td>
<td>Center for Computational Sciences, University of Tsukuba</td>
<td>HA-PN9 TOCA - Cray XE6-SP9M Cluster, Intel Xeon E5-2680v2 10C 2.80GHz, Infiniband QDR, NVIDIA K20x</td>
<td>78.77</td>
</tr>
<tr>
<td>4</td>
<td>3,185.91</td>
<td>Swiss National Supercomputing Centre (CSCS)</td>
<td>PS Sint - Cray XC30, Xeon E5-2670 8C 2.60GHz, Aries Interconnect, NVIDIA K20x</td>
<td>1,753.86</td>
</tr>
<tr>
<td>5</td>
<td>3,130.95</td>
<td>ROMEO-HPC Center - Champagne-Ardenne</td>
<td>romeo - Bull R421-E3 Cluster, Intel Xeon E5-2650v2 8C 2.60GHz, Infiniband FDR, NVIDIA K20x</td>
<td>81.41</td>
</tr>
<tr>
<td>6</td>
<td>3,068.71</td>
<td>GSIC Center, Tokyo Institute of Technology</td>
<td>TSUBAME 2.5 - Cluster Platform SL380s G7, Xeon X5670 6C 2.93GHz, Infiniband QDR, NVIDIA K20x</td>
<td>922.54</td>
</tr>
<tr>
<td>7</td>
<td>2,702.16</td>
<td>University of Arizona</td>
<td>iDataLad DX3500/M4, Intel Xeon E5-2650v2 8C 2.60GHz, Infiniband FDR14, NVIDIA K20x</td>
<td>53.62</td>
</tr>
<tr>
<td>8</td>
<td>2,029.10</td>
<td>MaxPlanck-Gesellschaft MPMP</td>
<td>iDataLad DX3500/M4, Intel Xeon E5-2650v2 10C 2.80GHz, Infiniband, NVIDIA K20x</td>
<td>269.94</td>
</tr>
<tr>
<td>9</td>
<td>2,029.10</td>
<td>Financial Institution</td>
<td>iDataLad DX3500/M4, Intel Xeon E5-2650v2 10C 2.80GHz, Infiniband, NVIDIA K20x</td>
<td>55.82</td>
</tr>
<tr>
<td>10</td>
<td>2,358.69</td>
<td>CSIRO</td>
<td>CSIRO GPU Cluster - Nitro O16 3GPU, Xeon E5-2650 8C 2.60GHz, Infiniband FDR, NVIDIA K20m</td>
<td>71.01</td>
</tr>
</tbody>
</table>

* Performance data obtained from publicly available sources including TOP500
Tesla users are solving the world’s great scientific and technical challenges. We serve them with a robust platform of technologies, tools, libraries and experts at the intersection of algorithms and computer architecture. Using a supercomputer powered by 3,000 Tesla processors, University of Illinois scientists achieved a breakthrough in HIV research. Performing the first all-atom simulation of the virus, they discovered the chemical structure of its capsid — “the perfect target for fighting the infection.”
Visual computing is more important than ever, with consumer expectation for rich graphics rising amid a massive proliferation of mobile devices and displays. The world’s leading OEMs, from Apple to Audi, will build computing devices that incorporate more than 2 billion GPU cores in 2014. NVIDIA creates the world’s best GPUs to address this opportunity, either through processors or IP licensing.

Source: Gartner, Strategy Analytics, DFC
Introduced at CES 2014, Tegra® K1, a 192-core super chip, brings the heart of GeForce and the soul of Tesla to mobile. It’s based on the Kepler architecture, which powers the world’s fastest GPU, GeForce® GTX™ 780 Ti, as well as the Titan supercomputer at Oak Ridge National Labs. With 192 fully programmable processor cores, Tegra K1 bridges the gap for developers, who can now build next-gen games and apps that will run on any device.
NVIDIA powers 4.5 million cars on the road and is designed into 20+ brands and 100+ models. Tegra K1 will accelerate this momentum. With the automotive-grade version of the same GPU that powers the world’s 10 most energy-efficient supercomputers, the Tegra K1 VCM will help self-driving cars advance from the realm of research into the mass market and bring photo-realistic digital cockpits to life.
NVIDIA has grown from a three-person start-up into a global company. We recently set out to build a new campus that will suit our expanding company and vision. Standing at the intersection of science and art — just like our work in visual computing — the new NVIDIA headquarters will capture the ambition and imagination of our people.
“Much of what we will see in the future will likely come from NVIDIA technology as we increasingly struggle to differentiate between what is real and what has been created from someone’s imagination.”
Founded in 1993
Jen-Hsun Huang is co-founder and CEO
Listed with NASDAQ under the symbol NVDA in 1999
Invented the GPU in 1999 and has shipped more than 1 billion to date
FY14: $4.13 billion in revenue
8,800 employees worldwide
~7,000 patent assets
Headquartered in Santa Clara, Calif.