
Lecture 3
Instruction Level Parallelism (1)

EEC 171 Parallel Architectures
John Owens

UC Davis

Credits
• © John Owens / UC Davis 2007–9.

• Thanks to many sources for slide material: Computer
Organization and Design (Patterson & Hennessy) ©
2005, Computer Architecture (Hennessy & Patterson)
© 2007, Inside the Machine (Jon Stokes) © 2007, ©
Dan Connors / University of Colorado 2007, © Wen-
Mei Hwu/David Kirk, University of Illinois 2007, ©
David Patterson / UCB 2003–6, © Mary Jane Irwin /
Penn State 2005, © John Kubiatowicz / UCB 2002, ©
Krste Asinovic/Arvind / MIT 2002, © Morgan
Kaufmann Publishers 1998.

Michael Abrash, 4/1/09
• To understand what Larrabee is, it helps to understand why Larrabee is.

Intel has been making single cores faster for decades by increasing the
clock speed, increasing cache size, and using the extra transistors each
new process generation provides to boost the work done during each
clock. That process certainly hasn't stopped, and will continue to be an
essential feature of main system processors for the foreseeable future,
but it's getting harder. This is partly because most of the low-hanging fruit
has already been picked, and partly because processors are starting to
run up against power budgets, and both out-of-order instruction
execution and higher clock frequency are power-intensive.

More recently, Intel has also been applying additional transistors in a
different way – by adding more cores. This approach has the great
advantage that, given software that can parallelize across many such
cores, performance can scale nearly linearly as more and more cores get
packed onto chips in the future.

Today’s Goals

• What is instruction-level parallelism?

• What do processors do to extract ILP?

• Not “how do they do that” (future lecture)

Why Do Processors Get Faster?

• 3 reasons:

• More parallelism (or more work per pipeline stage):
fewer clocks/instruction [more instructions/cycle]

• Get WIDER

• Deeper pipelines: fewer gates/clock

• Get DEEPER

• Transistors get faster (Moore’s Law): fewer ps/gate

• Get FASTER

Extracting Yet More Performance
• Two options:

• Increase the depth of the pipeline to increase the clock
rate — superpipelining

• How does this help performance? (What does it impact in the
performance equation?)

• Fetch (and execute) more than one instruction at one
time (expand every pipeline stage to accommodate
multiple instructions) — multiple-issue

• How does this help performance? (What does it impact in the
performance equation?)

• Today’s topic! seconds
program =

instructions
program × cycles

instruction ×
seconds
cycle

Extracting Yet More Performance

• Launching multiple instructions per stage allows the
instruction execution rate, CPI, to be less than 1

• So instead we use IPC: instructions per clock cycle

• e.g., a 3 GHz, four-way multiple-issue processor can execute at
a peak rate of 12 billion instructions per second with a best
case CPI of 0.25 or a best case IPC of 4

• If the datapath has a five stage pipeline, how many
instructions are active in the pipeline at any given time?

• How might this lead to difficulties?

Superpipelined Processors
• Increase the depth of the pipeline leading to shorter

clock cycles (and more instructions “in flight” at one
time)

• The higher the degree of superpipelining, the more
forwarding/hazard hardware needed, the more pipeline
latch overhead (i.e., the pipeline latch accounts for a
larger and larger percentage of the clock cycle time),
and the bigger the clock skew issues (i.e., because of
faster and faster clocks)

• We know there are limits to this (6–8 FO4 delays)

Superpipelined vs. Superscalar

• Superpipelined processors have longer instruction
latency (in terms of cycles) than the SS processors
which can degrade performance in the presence of
true dependencies

• Note we’re improving throughput at the expense of
latency!

• Superscalar processors are more susceptible to
resource conflicts—but we can fix this with hardware!

Instruction vs Machine Parallelism

• Instruction-level parallelism (ILP) of a program—a
measure of the average number of instructions in a
program that, in theory, a processor might be able to
execute at the same time

• Mostly determined by the number of true (data)
dependencies and procedural (control) dependencies in
relation to the number of other instructions

• ILP is traditionally “extracting parallelism from a single
instruction stream working on a single stream of data”

Instruction vs Machine Parallelism

• Machine parallelism of a processor—a measure of the
ability of the processor to take advantage of the ILP of
the program

• Determined by the number of instructions that can be
fetched and executed at the same time

• A perfect machine with infinite machine parallelism can
achieve the ILP of a program

• To achieve high performance, need both ILP and
machine parallelism

Matrix Multiplication




y0
y1
y2
y3



 =




m00 m01 m02 m03
m10 m11 m12 m13
m20 m21 m22 m23
m30 m31 m32 m33








x0
x1
x2
x3





Assembly for y0

• y0 = m00*x0 + m01*x1 + m02*x2 + m03*x3

• t0 = m00 * x0
t1 = m01 * x1
t2 = m02 * x2
t3 = m03 * x3
t4 = t0 + t1
t5 = t2 + t3
y0 = t4 + t5

Pipelined Processor

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg AL
U DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg AL
U DMemIfetch Reg

Reg AL
U DMemIfetch Reg

Reg AL
U DMemIfetch Reg

Review: Pipeline Hazards

• Structural hazards

• What are they?

• How do we eliminate them?

Review: Pipeline Hazards

• Data hazards—read after write

• What are they?

• How do we eliminate them?

Review: Pipeline Hazards

• Control hazards—beq, bne, j, jr, jal

• What are they?

• How do we eliminate them?

Hazards are bad because they
reduce the amount of achievable
machine parallelism and keep us
from achieving all the ILP in the

instruction stream.

Machine Parallelism

• There are 2 main approaches for machine parallelism.
Responsibility of resolving hazards is …

• Primarily hardware-based—“dynamic issue”, “superscalar”

• Today’s topic

• Primarily software-based—“VLIW”

Multiple-Issue Processor Styles
• Static multiple-issue processors (aka VLIW)

• Decisions on which instructions to execute simultaneously are being
made statically (at compile time by the compiler)

• E.g., Intel Itanium and Itanium 2 for the IA-64 ISA—EPIC (Explicit Parallel
Instruction Computer)

• We’ll talk about this later

• Dynamic multiple-issue processors (aka superscalar)

• Decisions on which instructions to execute simultaneously are being
made dynamically (at run time by the hardware)

• E.g., IBM Power 2, Pentium Pro/2/3/4, Core, MIPS R10K, HP PA 8500

• We’re talking about this today

How do we support machine parallelism?

Reg AL
U

DMemIfetch Reg

• First, let’s support parallel integer & FP instructions
(MIPS)

How do we support machine parallelism?

Reg AL
U

DMemIfetch Reg

• Now, how do we support multiple integer
instructions?

Pentium Microarchitecture

Write

Execution Core

Front End

Branch
Unit

Floating-
Point
Unit

FPU

BU

CIU (U)SIU (V)

Decode

Instruction Fetch

Control Unit

Integer Unit

Write

Floating-
Point
Unit

CIU-1SIU-1FPU-1

FPU-2

FPU-3

Decode-1

Decode-2

Instruction Fetch

L1 Instruction Cache

Integer Unit

Pentium issue restrictions

• What restrictions would we need to place on the
instructions in the U and V pipes to ensure correct
execution?

Additional restrictions

• Some instructions are not pairable

• some shift/rotate, long arith., extended, some fp, etc.

• Some instructions can only be issued to U

• carry/borrow, prefix, shift w/ immediate, some fp

• Both instructions access same d-cache memory bank

• Multi-cycle instructions that write to memory must
stall second pipe until last write

Multiple-Issue Datapath Responsibilities

• Must handle, with a combination of hardware and
software fixes, the fundamental limitations of

• Storage (data) dependencies—aka data hazards

• Most instruction streams do not have huge ILP so …

• ... this limits performance in a superscalar processor

Multiple-Issue Datapath Responsibilities

• Must handle, with a combination of hardware and
software fixes, the fundamental limitations of

• Procedural dependencies—aka control hazards

• Ditto, but even more severe

• Use dynamic branch prediction to help resolve the ILP issue

• Future lecture

Multiple-Issue Datapath Responsibilities

• Must handle, with a combination of hardware and
software fixes, the fundamental limitations of

• Resource conflicts—aka structural hazards

• A SS/VLIW processor has a much larger number of potential
resource conflicts

• Functional units may have to arbitrate for result buses and
register-file write ports

• Resource conflicts can be eliminated by duplicating the
resource or by pipelining the resource

Instruction Issue and Completion Policies

• Instruction-issue—initiate execution

• Instruction lookahead capability—fetch, decode and issue instructions
beyond the current instruction

• Instruction-completion—complete execution

• Processor lookahead capability—complete issued instructions beyond
the current instruction

• Instruction-commit—write back results to the RegFile or D$ (i.e.,
change the machine state)

In-order issue with in-order completion
In-order issue with out-of-order completion

Out-of-order issue with out-of-order completion and in-order commit
Out-of-order issue with out-of-order completion

In-Order Issue with In-Order Completion

• Simplest policy is to issue instructions in exact
program order and to complete them in the same
order they were fetched (i.e., in program order)

In-Order Issue with In-Order Completion (Ex.)

• Assume a pipelined processor that can fetch and
decode two instructions per cycle, that has three
functional units (a single cycle adder, a single cycle
shifter, and a two cycle multiplier), and that can
complete (and write back) two results per cycle

• Instruction sequence:
I1 – needs two execute cycles (a multiply)
I2
I3
I4 – needs the same function unit as I3
I5 – needs data value produced by I4
I6 – needs the same function unit as I5

In-Order Issue, In-Order Completion Example

EXIF
ID

WBI
n
s
t
r.

O
r
d
e
r

I1

I2

I3

I4

I5

I6
EXIF

ID
WB

EX

EX WB

EX WB

EXIF
ID

WB

EXIF
ID

WB

IF
ID

IF
ID

I1: two execute cycles
I2
I3

I4: same function unit as I3
I5: data value produced by I4
I6: same function unit as I5

In parallel can
Fetch/decode 2

Commit 2

IF
ID

IF
ID

IF
ID

Pentium Retrospective

• Limited in performance by “front end”

• Has to support variable-length instrs
and segments

• Supporting all x86 features tough!

• 30% of transistors are for legacy support

• Up to 40% in Pentium Pro!

• Down to 10% in P4

• Microcode ROM is huge

Commit Unit

Fetch

ALU 2

Front End

Execution

Core

ALU 1

Execute Execute

Write-back

Issue

Complete

Decode/
Dispatch

Pentium Retrospective

• Pentium is in-order issue, in-order complete

• “Static scheduling” by the dispatch logic:

• Fetch/dispatch/execute/retire: all in order

• Drawbacks:

• Adapts poorly to dynamic code stream

• Adapts poorly to future hardware

• What if we had 3 pipes not 2?

Commit Unit

Fetch

ALU 2

Front End

Execution

Core

ALU 1

Execute Execute

Write-back

Issue

Complete

Decode/
Dispatch

In-Order Issue with Out-of-Order Completion

• With out-of-order completion, a later instruction may
complete before a previous instruction

• Out-of-order completion is used in single-issue
pipelined processors to improve the performance of
long-latency operations such as divide

• When using out-of-order completion instruction issue
is stalled when there is a resource conflict (e.g., for a
functional unit) or when the instructions ready to
issue need a result that has not yet been computed

IOI-OOC Example

EXIF
ID

WBI
n
s
t
r.

O
r
d
e
r

I1

I2

I3

I4

I5

I6

EXIF
ID

WB

EX
EXIF

ID
WB

EXIF
ID

WB

EXIF
ID

WB

EXIF
ID

WB

IF
ID

IF
ID

I1: two execute cycles
I2
I3

I4: same function unit as I3
I5: data value produced by I4
I6: same function unit as I5

Handling Output Dependencies

• There is one more situation that stalls instruction issuing with IOI-OOC, assume

• I1 – writes to R3
I2 – writes to R3
I5 – reads R3

• If the I1 write occurs after the I2 write, then I5 reads an incorrect value for R3

• I2 has an output dependency on I1—write before write

• The issuing of I2 would have to be stalled if its result might later be overwritten by
an previous instruction (i.e., I1) that takes longer to complete—the stall happens
before instruction issue

• While IOI-OOC yields higher performance, it requires more dependency checking
hardware (both write-after-read and write-after-write)

Out-of-Order Issue with Out-of-Order Completion

• With in-order issue the processor stops decoding instructions
whenever a decoded instruction has a resource conflict or a data
dependency on an issued, but uncompleted instruction

• The processor is not able to look beyond the conflicted instruction even
though more downstream instructions might have no conflicts and thus
be issueable

• Fetch and decode instructions beyond the conflicted one
(“instruction window”: Tetris), store them in an instruction buffer (as
long as there’s room), and flag those instructions in the buffer that
don’t have resource conflicts or data dependencies

• Flagged instructions are then issued from the buffer without regard
to their program order

OOI-OOC Example

EXIF
ID

WBI
n
s
t
r.

O
r
d
e
r

I1

I2

I3

I4

I5

I6
EXIF

ID
WB

EX
EXIF

ID
WB

EXIF
ID

WB

EXIF
ID

WB

EXIF
ID

WB

I1: two execute cycles
I2
I3

I4: same function unit as I3
I5: data value produced by I4
I6: same function unit as I5

IF
ID

IF
ID

Dependency Examples

• R3 := R3 * R5 True data dependency (RAW)
R4 := R3 + 1 Output dependency (WAW)
R3 := R5 + 1 Antidependency (WAR)

Antidependencies
• With OOI also have to deal with data

antidependencies – when a later instruction (that
completes earlier) produces a data value that destroys
a data value used as a source in an earlier instruction
(that issues later)

• The constraint is similar to that of true data
dependencies, except reversed

• Instead of the later instruction using a value (not yet)
produced by an earlier instruction (read before write),
the later instruction produces a value that destroys a
value that the earlier instruction (has not yet) used
(write before read)

Dependencies Review
• Each of the three data dependencies …

• True data dependencies (read before write)

• Antidependencies (write before read)

• Output dependencies (write before write)

• … manifests itself through the use of registers (or other storage locations)

• True dependencies represent the flow of data and information through a program

• Anti- and output dependencies arise because the limited number of registers
mean that programmers reuse registers for different computations

• When instructions are issued out-of-order, the correspondence between registers
and values breaks down and the values conflict for registers

storage
conflicts

Storage Conflicts and Register Renaming

• Storage conflicts can be reduced (or eliminated) by increasing or duplicating the
troublesome resource

• Provide additional registers that are used to reestablish the correspondence between
registers and values

• Allocated dynamically by the hardware in SS processors

• Register renaming — the processor renames the original register identifier in the
instruction to a new register (one not in the visible register set)

• R3 := R3 * R5 R3b := R3a * R5a
R4 := R3 + 1 R4a := R3b + 1
R3 := R5 + 1 R3c := R5a + 1

• The hardware that does renaming assigns a “replacement” register from a pool of
free registers and releases it back to the pool when its value is superseded and
there are no outstanding references to it [future lecture!]

Pentium Pro

Commit

Re-order Buffer
(ROB)

Commitment Unit

Execution Core

Front End

Floating-
Point
Unit

SIUCIU

Load-Store Unit

Reorder Buffer (ROB)

Integer Unit

Port 0 Port 1 Port 4 Port 3 Port 2Port 0

Store

Data

Store

Addr.

Load

Addr.

Translate x86/
Decode

Branch
Unit

BPU

Instruction Fetch

Memory Access UnitsScalar ALUs

FPU

Branch
Unit

Port 1

BU

Reservation Station (RS)

Pentium Pro

1. Fetch In order

2. Decode/dispatch In order

3. Issue Reorder

4. Execute Out of order

5. Complete Reorder

6. Writeback (commit) In order
Commit Unit

Fetch

ALU 2

Front End

Execution

Core

ALU 1

Execute Execute

Write-back

Issue

Complete

Decode/
Dispatch

P6 Pipeline
• Instruction fetch, BTB access (3.5 stages)

• 2 cycles for instruction fetch

• Decode, x86->uops (2.5 stages)

• Register rename (1 stage)

• Write to reservation station (1 stage)

• Read from reservation station (1 stage)

• Execute (1+ stages)

• Commit (2 stages)

Pentium Pro backends

• Pentium Pro

• Pentium 2

• Pentium 3

� � � � �
 � � � � � � 	 �

Floating-
Point
Unit

SIUCIU

Load-Store UnitInteger Unit

Port 0 Port 1 Port 4 Port 3 Port 2Port 0

Store

Data

Store

Addr.

Load

Addr.

Memory Access UnitsScalar ALUs

FPU

Branch
Unit

Port 1

BU

Reservation Station (RS)

Execution Core

MMX Unit

MMX 1MMX 0

Floating-
Point
Unit

SIUCIU

Load-Store UnitInteger Unit

Port 0 Port 1Port 0 Port 1 Port 4 Port 3 Port 2Port 0

Store

Data

Store

Addr.

Load

Addr.

Memory Access UnitsScalar ALUsVector ALUs

FPU

Branch
Unit

Port 1

BU

Reservation Station (RS)

Execution Core

MMX/SSE Unit
FP/SSE

Unit

SIUCIU

Load-Store UnitInteger Unit

Port 0 Port 1Port 1 Port 1Port 0 Port 4 Port 3 Port 2Port 0

Store

Data

Store

Addr.

Load

Addr.

Memory Access UnitsScalar ALUsVector ALUs

Branch
Unit

Port 1

BU

Reservation Station (RS)

FPU &

VFMUL
MMX 1MMX 0

VFADD

VSHUFF

VRECIP

