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Michael Abrash, 4/1/09
• To understand what Larrabee is, it helps to understand why Larrabee is. 

Intel has been making single cores faster for decades by increasing the 
clock speed, increasing cache size, and using the extra transistors each 
new process generation provides to boost the work done during each 
clock. That process certainly hasn't stopped, and will continue to be an 
essential feature of main system processors for the foreseeable future, 
but it's getting harder. This is partly because most of the low-hanging fruit 
has already been picked, and partly because processors are starting to 
run up against power budgets, and both out-of-order instruction 
execution and higher clock frequency are power-intensive.

More recently, Intel has also been applying additional transistors in a 
different way – by adding more cores. This approach has the great 
advantage that, given software that can parallelize across many such 
cores, performance can scale nearly linearly as more and more cores get 
packed onto chips in the future. 



Today’s Goals

• What is instruction-level parallelism?

• What do processors do to extract ILP?

• Not “how do they do that” (future lecture)



Why Do Processors Get Faster?

• 3 reasons:

• More parallelism (or more work per pipeline stage): 
fewer clocks/instruction [more instructions/cycle]

• Get WIDER

• Deeper pipelines: fewer gates/clock

• Get DEEPER

• Transistors get faster (Moore’s Law): fewer ps/gate

• Get FASTER



Extracting Yet More Performance
• Two options:

• Increase the depth of the pipeline to increase the clock 
rate — superpipelining 

• How does this help performance? (What does it impact in the 
performance equation?)

• Fetch (and execute) more than one instruction at one 
time (expand every pipeline stage to accommodate 
multiple instructions) — multiple-issue

• How does this help performance? (What does it impact in the 
performance equation?)

• Today’s topic! seconds
program =

instructions
program × cycles

instruction ×
seconds
cycle



Extracting Yet More Performance

• Launching multiple instructions per stage allows the 
instruction execution rate, CPI, to be less than 1

• So instead we use IPC:  instructions per clock cycle

• e.g., a 3 GHz, four-way multiple-issue processor can execute at 
a peak rate of 12 billion instructions per second with a best 
case CPI of 0.25 or a best case IPC of 4

• If the datapath has a five stage pipeline, how many 
instructions are active in the pipeline at any given time?

• How might this lead to difficulties?



Superpipelined Processors
• Increase the depth of the pipeline leading to shorter 

clock cycles (and more instructions “in flight” at one 
time)

• The higher the degree of superpipelining, the more 
forwarding/hazard hardware needed, the more pipeline 
latch overhead (i.e., the pipeline latch accounts for a 
larger and larger percentage of the clock cycle time), 
and the bigger the clock skew issues (i.e., because of 
faster and faster clocks)

• We know there are limits to this (6–8 FO4 delays)



Superpipelined vs. Superscalar

• Superpipelined processors have longer instruction 
latency (in terms of cycles) than the SS processors 
which can degrade performance in the presence of 
true dependencies

• Note we’re improving throughput at the expense of 
latency!

• Superscalar processors are more susceptible to 
resource conflicts—but we can fix this with hardware!



Instruction vs Machine Parallelism

• Instruction-level parallelism (ILP) of a program—a 
measure of the average number of instructions in a 
program that, in theory, a processor might be able to 
execute at the same time

• Mostly determined by the number of true (data) 
dependencies and procedural (control) dependencies in 
relation to the number of other instructions

• ILP is traditionally “extracting parallelism from a single 
instruction stream working on a single stream of data”



Instruction vs Machine Parallelism

• Machine parallelism of a processor—a measure of the 
ability of the processor to take advantage of the ILP of 
the program

• Determined by the number of instructions that can be 
fetched and executed at the same time

• A perfect machine with infinite machine parallelism can 
achieve the ILP of a program

• To achieve high performance, need both ILP and 
machine parallelism



Matrix Multiplication
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Assembly for y0

• y0 = m00*x0 + m01*x1 + m02*x2 + m03*x3

• t0 = m00 * x0
t1 = m01 * x1
t2 = m02 * x2
t3 = m03 * x3
t4 = t0 + t1
t5 = t2 + t3
y0 = t4 + t5



Pipelined Processor
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Review:  Pipeline Hazards

• Structural hazards

• What are they?

• How do we eliminate them?



Review:  Pipeline Hazards

• Data hazards—read after write

• What are they?

• How do we eliminate them?



Review:  Pipeline Hazards

• Control hazards—beq, bne, j, jr, jal

• What are they?

• How do we eliminate them?



Hazards are bad because they 
reduce the amount of achievable 
machine parallelism and keep us 
from achieving all the ILP in the 

instruction stream.



Machine Parallelism

• There are 2 main approaches for machine parallelism. 
Responsibility of resolving hazards is …

• Primarily hardware-based—“dynamic issue”, “superscalar”

• Today’s topic

• Primarily software-based—“VLIW”



Multiple-Issue Processor Styles
• Static multiple-issue processors (aka VLIW)

• Decisions on which instructions to execute simultaneously are being 
made statically (at compile time by the compiler)

• E.g., Intel Itanium and Itanium 2 for the IA-64 ISA—EPIC (Explicit Parallel 
Instruction Computer)

• We’ll talk about this later

• Dynamic multiple-issue processors (aka superscalar)

• Decisions on which instructions to execute simultaneously are being 
made dynamically (at run time by the hardware)

• E.g., IBM Power 2, Pentium Pro/2/3/4, Core, MIPS R10K, HP PA 8500

• We’re talking about this today



How do we support machine parallelism?

Reg AL
U

DMemIfetch Reg

• First, let’s support parallel integer & FP instructions 
(MIPS)



How do we support machine parallelism?

Reg AL
U

DMemIfetch Reg

• Now, how do we support multiple integer 
instructions?



Pentium Microarchitecture
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Pentium issue restrictions

• What restrictions would we need to place on the 
instructions in the U and V pipes to ensure correct 
execution?



Additional restrictions

• Some instructions are not pairable 

• some shift/rotate, long arith., extended, some fp, etc.

• Some instructions can only be issued to U

• carry/borrow, prefix, shift w/ immediate, some fp

• Both instructions access same d-cache memory bank

• Multi-cycle instructions that write to memory must 
stall second pipe until last write



Multiple-Issue Datapath Responsibilities

• Must handle, with a combination of hardware and 
software fixes, the fundamental limitations of 

• Storage (data) dependencies—aka data hazards

• Most instruction streams do not have huge ILP so …

• ... this limits performance in a superscalar processor



Multiple-Issue Datapath Responsibilities

• Must handle, with a combination of hardware and 
software fixes, the fundamental limitations of 

• Procedural dependencies—aka control hazards

• Ditto, but even more severe

• Use dynamic branch prediction to help resolve the ILP issue

• Future lecture



Multiple-Issue Datapath Responsibilities

• Must handle, with a combination of hardware and 
software fixes, the fundamental limitations of 

• Resource conflicts—aka structural hazards

• A SS/VLIW processor has a much larger number of potential 
resource conflicts

• Functional units may have to arbitrate for result buses and 
register-file write ports

• Resource conflicts can be eliminated by duplicating the 
resource or by pipelining the resource



Instruction Issue and Completion Policies

• Instruction-issue—initiate execution

• Instruction lookahead capability—fetch, decode and issue instructions 
beyond the current instruction

• Instruction-completion—complete execution

• Processor lookahead capability—complete issued instructions beyond 
the current instruction

• Instruction-commit—write back results to the RegFile or D$ (i.e., 
change the machine state)

In-order issue with in-order completion
In-order issue with out-of-order completion

Out-of-order issue with out-of-order completion and in-order commit
Out-of-order issue with out-of-order completion



In-Order Issue with In-Order Completion

• Simplest policy is to issue instructions in exact 
program order and to complete them in the same 
order they were fetched (i.e., in program order)



In-Order Issue with In-Order Completion (Ex.)

• Assume a pipelined processor that can fetch and 
decode two instructions per cycle, that has three 
functional units (a single cycle adder, a single cycle 
shifter, and a two cycle multiplier), and that can 
complete (and write back) two results per cycle

• Instruction sequence:
I1 – needs two execute cycles (a multiply)
I2
I3
I4 – needs the same function unit as I3
I5 – needs data value produced by I4
I6 – needs the same function unit as I5



In-Order Issue, In-Order Completion Example
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Pentium Retrospective

• Limited in performance by “front end”

• Has to support variable-length instrs
and segments

• Supporting all x86 features tough!

• 30% of transistors are for legacy support

• Up to 40% in Pentium Pro!

• Down to 10% in P4

• Microcode ROM is huge
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Pentium Retrospective

• Pentium is in-order issue, in-order complete

• “Static scheduling” by the dispatch logic:

• Fetch/dispatch/execute/retire: all in order

• Drawbacks:

• Adapts poorly to dynamic code stream

• Adapts poorly to future hardware

• What if we had 3 pipes not 2?
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In-Order Issue with Out-of-Order Completion

• With out-of-order completion, a later instruction may 
complete before a previous instruction

• Out-of-order completion is used in single-issue 
pipelined processors to improve the performance of 
long-latency operations such as divide

• When using out-of-order completion instruction issue 
is stalled when there is a resource conflict (e.g., for a 
functional unit) or when the instructions ready to 
issue need a result that has not yet been computed



IOI-OOC Example
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Handling Output Dependencies

• There is one more situation that stalls instruction issuing with IOI-OOC, assume

• I1 – writes to R3
I2 – writes to R3
I5 – reads R3

• If the I1 write occurs after the I2 write, then I5 reads an incorrect value for R3

• I2 has an output dependency on I1—write before write

• The issuing of I2 would have to be stalled if its result might later be overwritten by 
an previous instruction (i.e., I1) that takes longer to complete—the stall happens 
before instruction issue

• While IOI-OOC yields higher performance, it requires more dependency checking 
hardware (both write-after-read and write-after-write)



Out-of-Order Issue with Out-of-Order Completion

• With in-order issue the processor stops decoding instructions 
whenever a decoded instruction has a resource conflict or a data 
dependency on an issued, but uncompleted instruction

• The processor is not able to look beyond the conflicted instruction even 
though more downstream instructions might have no conflicts and thus 
be issueable

• Fetch and decode instructions beyond the conflicted one 
(“instruction window”: Tetris), store them in an instruction buffer (as 
long as there’s room), and flag those instructions in the buffer that 
don’t have resource conflicts or data dependencies

• Flagged instructions are then issued from the buffer without regard 
to their program order



OOI-OOC Example
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Dependency Examples

• R3 := R3 * R5   True data dependency (RAW)
R4 := R3 + 1    Output dependency (WAW)
R3 := R5 + 1    Antidependency (WAR)



Antidependencies
• With OOI also have to deal with data 

antidependencies – when a later instruction (that 
completes earlier) produces a data value that destroys 
a data value used as a source in an earlier instruction 
(that issues later)

• The constraint is similar to that of true data 
dependencies, except reversed

• Instead of the later instruction using a value (not yet) 
produced by an earlier instruction (read before write), 
the later instruction produces a value that destroys a 
value that the earlier instruction (has not yet) used 
(write before read)



Dependencies Review
• Each of the three data dependencies …

• True data dependencies (read before write)

• Antidependencies (write before read)

• Output dependencies (write before write)

• … manifests itself through the use of registers (or other storage locations)

• True dependencies represent the flow of data and information through a program

• Anti- and output dependencies arise because the limited number of registers 
mean that programmers reuse registers for different computations

• When instructions are issued out-of-order, the correspondence between registers 
and values breaks down and the values conflict for registers 

storage 
conflicts



Storage Conflicts and Register Renaming

• Storage conflicts can be reduced (or eliminated) by increasing or duplicating the 
troublesome resource

• Provide additional registers that are used to reestablish the correspondence between 
registers and values

• Allocated dynamically by the hardware in SS processors

• Register renaming — the processor renames the original register identifier in the 
instruction to a new register (one not in the visible register set)

• R3 := R3 * R5  R3b := R3a * R5a
R4 := R3 + 1  R4a := R3b + 1
R3 := R5 + 1  R3c := R5a + 1

• The hardware that does renaming assigns a “replacement” register from a pool of 
free registers and releases it back to the pool when its value is superseded and 
there are no outstanding references to it    [future lecture!]



Pentium Pro

Commit

Re-order Buffer
(ROB)

Commitment Unit

Execution Core

Front End

Floating-
Point
Unit

SIUCIU

Load-Store Unit

Reorder Buffer (ROB)

Integer Unit

Port 0 Port 1 Port 4 Port 3 Port 2Port 0

Store

Data

Store

Addr.

Load

Addr.

Translate x86/
Decode

Branch
Unit

BPU

Instruction Fetch

Memory Access UnitsScalar ALUs

FPU

Branch
Unit

Port 1

BU

Reservation Station (RS)



Pentium Pro

1. Fetch      In order

2. Decode/dispatch  In order

3. Issue      Reorder

4. Execute     Out of order

5. Complete     Reorder

6. Writeback (commit) In order
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P6 Pipeline
• Instruction fetch, BTB access (3.5 stages)

• 2 cycles for instruction fetch

• Decode, x86->uops (2.5 stages)

• Register rename (1 stage)

• Write to reservation station (1 stage)

• Read from reservation station (1 stage)

• Execute (1+ stages)

• Commit (2 stages)



Pentium Pro backends

• Pentium Pro

• Pentium 2

• Pentium 3
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