TLP Project

May 6, 2009

Background Review

- Suppose your company wants to purchase some new computers.
 - Multiple single core systems that will be clustered
 - Quad-core systems.
- Suppose your budget is limited.
- Please write a report to a technical manager who needs to make purchase decisions with your suggestions about the best type of computers to purchase.

Project Overview

- Parallelize mandelbrot4.c or mandelbrot5.c
 - Make sure exec time works
 - Play with iterations param (longer run time)
- Part 1 pthreads
 - Run algorithm with various numbers of pthreads.
- Part 2 MPI
 - Run algorithm with various numbers of nodes
- Analyze to determine tradeoff of cluster vs. pthreads

Toolchain

- pthreads howto (<u>http://www.yolinux.com/TUTORIALS/LinuxTutorial PosixThreads.html</u>)
- MPI Documentation
 (http://heather.cs.ucdavis.edu/~matloff/MPI/NotesLA M.NM.html)
- General LAM MPI documentation (http://www.lam-mpi.org/tutorials/one-step/lam.php)

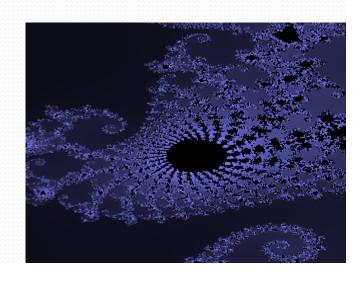
Sample Code

- mandelbrot4.c Compute the Mandelbrot set and outputs a tga file.
- mandelbrot5.c Do a dot product between two vectors using mpi
- Mandelbrot_parms parameters for the Mandelbrot runs.
- Data move in mpi Showing movement of data between master and slaves.
- vecsum.c Showing MPI scatter and gather in action.
- dotprod.c.pthreads Do a dot product between two vectors using pthreads
- dotprod.c.mpi Do a dot product between two vectors using mpi

Other References

• Gather Web page – Web page illustrating MPI gather (http://mpi.deino.net/mpi_functions/MPI_Gather.html)

Mandelbrot pictures – These pictures will match your output


(http://www.maths.tcd.ie/~nryan/mandelbrot/seahorsezoom.ht ml).

Before You Start

- LAM setup
 - First logon to one of the ECE unix systems.
 - 3 initial steps before you using MPI
 - \$ setup lam
 \$ vi .cshrc (add the following line:)
 setenv LAMRSH 'ssh -Y'
 resoft (or open a new terminal window)
- Compiling Mandelbrot samples
 - cc -lm -o mandelbrot5 mandelbrot5.c

Parallelize mandelbrot[4/5].c

- Choose one version
 - Mandelbrot4.c less colorful
 - Mandelbrot5.c more colorful
- Outputs file in tga format (viewable with gimp)
- Works on 960 lines for 1280 x 960 image
 - Suggest splitting work by height
- Pthreads
 - Split up common memory / parms
- MPI
 - Send parms
 - Gather picture

pthread

- Make sure and get code working on ECE machines
- Test code with various thread configs
 - ECE single core machines
 - Tetra quad-core machine
- Record runing performance (program runtime in msecs).
- Record the processor speed information.
- Pthread capable code will be turned in.

MPI

- Run MPI version of code on various numbers of cluster members.
 - Suggest debugging on 2 cluster nodes to make sure your data is OK.
- How does performance per MPI node scale with more nodes?
- How does overall performance scale with more nodes?
- At what point does it not make sense to add more nodes?
- Handin MPI version of code.

Report

- Briefly explain strategy to parallelize code.
- Show performance as threads are varied
- Show performance as cluster members are varied
- Correlate MPI with threads performance
 - Raw CPU power?
- Discuss trade-off of running on MPI vs. threads
 - Machine expense?

DUE DATE: Friday 5/15 at 5PM.