Hands-on CUDA exercises

CUDA Exercises <X

NVIDIA.

® We have provided skeletons and solutions for 6
hands-on CUDA exercises

® In each exercise (except for #5), you have to

implement the missing portions of the code

® Finished when you compile and run the program and get
the output “Correct!”

® Solutions are included in the “solution” folder of
each exercise

© NVIDIA Corporation 2008

Compiling the Code: Windows <3

NVIDIA.

® Open the <project>.sin file in Microsoft Visual
Studio
® Build the project

® 4 configuration choices:
® Release,Debug,EmuRelease, EmuDebug

® To debug your code build EmuDebug configuration

® Can set breakpoints inside kernels (__global _ or
__device _ functions)

® Can debug the code as normal, even printf!
® One CPU thread per GPU thread
® Threads not actually in parallel on GPU

© NVIDIA Corporation 2008

Compiling the Code: Linux <3

NVIDIA.

nvcece <filename>.cu [—-0 <executable>]
® Builds release mode
nvcee —g <filename>.cu

Builds debug (device) mode
® Can debug host code but not device code (runs on GPU)

—deviceemu <filename>.cu

® Builds device emulation mode
b All code runs on CPU, but no debug symbols

—deviceemu —g <filename>.cu

b Builds debug device emulation mode
All code runs on CPU, with debug symbols

® Debug using gdb or other linux debugger

© NVIDIA Corporation 2008

1: Copying between host and device <a

VIDIA.

® Start from the “cudaMallocAndMemcpy” template.

 Part1: Allocate memory for pointers d_a and d_b on the device.
- Part2: Copy h_a on the host to d_a on the device.
Part3: Do a device to device copy from d_ato d _b.
 Part4: Copy d_b on the device back to h_a on the host.
» Part5: Free d_a and d_b on the host.

- Bonus: Experiment with cudaMallocHost in place of malloc for
allocating h_a.

© NVIDIA Corporation 2008

2: Launching kernels <3

NVIDIA.

 Start from the “myFirstKernel” template.

® Parti: Allocate device memory for the result of the kernel
using pointer d_a.

 Part2: Configure and launch the kernel using a 1-D grid of 1-D
thread blocks.

Part3: Have each thread set an element of d_a as follows:

idx = blockIdx.x*blockDim.x + threadIdx.x
d a[idx] = 1000*blockIdx.x + threadIdx.x

® Part4: Copy the result in d_a back to the host pointer h_a.

® Part5: Verify that the result is correct.

© NVIDIA Corporation 2008

3: Reverse Array (single block) <3

NVIDIA.

 Given an input array {a,, a,, ..., a,.,} in pointer d_a, store the
reversed array {a, _,, a,.,, -.., 8,5} In pointer d_b

Start from the “reverseArray_singleblock” template

' Only one thread block launched, to reverse an array of size
N = numThreads = 256 elements

Part 1 (of 1): All you have to do is implement the body of the
kernel “reverseArrayBlock()”

) Each thread moves a single element to reversed position
® Read input from d_a pointer
® Store output in reversed location in d_b pointer

© NVIDIA Corporation 2008

4: Reverse Array (multiblock) >

NVIDIA.

 Given an input array {a,, a,, ..., a,.,} in pointer d_a, store the
reversed array {a, _,, a,.,, -.., 8,5} In pointer d_b

Start from the “reverseArray multiblock” template

' Multiple 256-thread blocks launched
® To reverse an array of size N, N/256 blocks

Part 1: Compute the humber of blocks to launch
 Part 2: Implement the kernel reverseArrayBlock()

' Note that now you must compute both
® The reversed location within the block
® The reversed offset to the start of the block

© NVIDIA Corporation 2008

5: Profiling Array Reversal <3

NVIDIA.

® Your array reversal has a performance problem

® Use the CUDA Visual Profiler to run your compiled
program

® Compile release mode, run “cudaprof”, create a new
project

® Browse to your executable file
in the “launch box” of the
session settings dialog —

© NVIDIA Corporation 2008

=
NVIDIA.

5: Profiling Array Reversal

® Click on configuration tab

® Select the check box next to “signal list”

® Click OK, then “Start”

® Check if any of these are
non-zero:
® GLD_INCOHERENT
® GST_INCOHERENT
® WARP_SERIALIZE

® Take a note of the “GPU Time”

© NVIDIA Corporation 2008

=
NVIDIA.

6: Optimizing Array Reversal

® Goal: Get rid of incoherent loads/stores and
improve performance
® Use shared memory to reverse each block

® Part 1: compute the number of bytes of shared mem
® One element per thread

® Part 2: implement the kernel
® Comments should help
® Don’t forget to compute the correct block offset!

® Part 3: Profile the working code
® Compare value of GLD/GST_INCOHERENT to previous
® Compare GPU Time to previous

© NVIDIA Corporation 2008

Reverse Data in shared memory <3

NVIDIA.

Input addresses are linear and aligned = coalesced

PSRV 0 2 G 4 5 o 7 s o 10111213 145

o v I!III IIHI BEIII IIII
(local variables)

=():

Output Global Mer l-----ﬂﬂ-ﬂ-----ﬂ

Output addresses are linear and aligned = coalesced

© NVIDIA Corporation 2008

