
Hands-on CUDA exercises

© NVIDIA Corporation 2008

CUDA Exercises

We have provided skeletons and solutions for 6
hands-on CUDA exercises

In each exercise (except for #5), you have to
implement the missing portions of the code

Finished when you compile and run the program and get
the output “Correct!”

Solutions are included in the “solution” folder of
each exercise

© NVIDIA Corporation 2008

Compiling the Code: Windows

Open the <project>.sln file in Microsoft Visual
Studio

Build the project

4 configuration choices:

Release,Debug,EmuRelease, EmuDebug

To debug your code build EmuDebug configuration

Can set breakpoints inside kernels (__global__ or
__device__ functions)

Can debug the code as normal, even printf!

One CPU thread per GPU thread

Threads not actually in parallel on GPU

© NVIDIA Corporation 2008

Compiling the Code: Linux

nvcc <filename>.cu [-o <executable>]

Builds release mode

nvcc –g <filename>.cu

Builds debug (device) mode

Can debug host code but not device code (runs on GPU)

nvcc –deviceemu <filename>.cu

Builds device emulation mode

All code runs on CPU, but no debug symbols

nvcc –deviceemu –g <filename>.cu

Builds debug device emulation mode

All code runs on CPU, with debug symbols

Debug using gdb or other linux debugger

© NVIDIA Corporation 2008 5

1: Copying between host and device

Start from the “cudaMallocAndMemcpy” template.

Part1: Allocate memory for pointers d_a and d_b on the device.

Part2: Copy h_a on the host to d_a on the device.

Part3: Do a device to device copy from d_a to d_b.

Part4: Copy d_b on the device back to h_a on the host.

Part5: Free d_a and d_b on the host.

Bonus: Experiment with cudaMallocHost in place of malloc for
allocating h_a.

© NVIDIA Corporation 2008 6

2: Launching kernels

Start from the “myFirstKernel” template.

Part1: Allocate device memory for the result of the kernel
using pointer d_a.

Part2: Configure and launch the kernel using a 1-D grid of 1-D
thread blocks.

Part3: Have each thread set an element of d_a as follows:

idx = blockIdx.x*blockDim.x + threadIdx.x

d_a[idx] = 1000*blockIdx.x + threadIdx.x

Part4: Copy the result in d_a back to the host pointer h_a.

Part5: Verify that the result is correct.

© NVIDIA Corporation 2008 7

3: Reverse Array (single block)

Given an input array {a0, a1, …, an-1} in pointer d_a, store the
reversed array {an-1, an-2, …, a0} in pointer d_b

Start from the “reverseArray_singleblock” template

Only one thread block launched, to reverse an array of size
N = numThreads = 256 elements

Part 1 (of 1): All you have to do is implement the body of the
kernel “reverseArrayBlock()”

Each thread moves a single element to reversed position
Read input from d_a pointer

Store output in reversed location in d_b pointer

© NVIDIA Corporation 2008

4: Reverse Array (multiblock)

Given an input array {a0, a1, …, an-1} in pointer d_a, store the
reversed array {an-1, an-2, …, a0} in pointer d_b

Start from the “reverseArray_multiblock” template

Multiple 256-thread blocks launched
To reverse an array of size N, N/256 blocks

Part 1: Compute the number of blocks to launch

Part 2: Implement the kernel reverseArrayBlock()

Note that now you must compute both
The reversed location within the block

The reversed offset to the start of the block

© NVIDIA Corporation 2008

5: Profiling Array Reversal

Your array reversal has a performance problem

Use the CUDA Visual Profiler to run your compiled
program

Compile release mode, run “cudaprof”, create a new
project

Browse to your executable file
in the “launch box” of the
session settings dialog

© NVIDIA Corporation 2008

5: Profiling Array Reversal

Click on configuration tab

Select the check box next to “signal list”

Click OK, then “Start”

Check if any of these are
non-zero:

GLD_INCOHERENT

GST_INCOHERENT

WARP_SERIALIZE

Take a note of the “GPU Time”

© NVIDIA Corporation 2008

6: Optimizing Array Reversal

Goal: Get rid of incoherent loads/stores and
improve performance

Use shared memory to reverse each block

Part 1: compute the number of bytes of shared mem

One element per thread

Part 2: implement the kernel

Comments should help

Don’t forget to compute the correct block offset!

Part 3: Profile the working code

Compare value of GLD/GST_INCOHERENT to previous

Compare GPU Time to previous

© NVIDIA Corporation 2008

11 10 9 87 6 5 43 2 1 0

Reverse Data in shared memory

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15 14 13 12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

12 13 14 158 9 10 114 5 6 70 1 2 3
Registers

(local variables)

Shared Memory

blockOffset=0 blockOffset=4 blockOffset=8 blockOffset=12

Input Global Mem

Output Global Mem

Input addresses are linear and aligned = coalesced

Output addresses are linear and aligned = coalesced

