

ExaFMM: An open source library for Fast Multipole Methods aimed towards Exascale systems

BOSTON UNIVERSITY

Lorena A Barba¹, Rio Yokota²

¹ Boston University, ² KAUST

What's new? An open source FMM

The fast multipole method (FMM) is a numerical engine used in many applications, from acoustics, electrostatics, fluid simulations, wave scattering, and more.

Despite its importance, there is a lack of open community code, which arguably has affected its wider adoption. It is also a difficult algorithm to understand and to program, making availability of open-source implementations even more desirable.

Method: Multipole-based, hierarchical

There are two common variants: treecodes and FMMs. Both use tree data structures to cluster 'source particles' into a hierarchy of cells. See Figure to the right.

Multipole expansions are used to represent the effect of a cluster of particles, and are built for parent cells by an easy transformation (M2M). Local expansions are used to evaluate the effect of multipole expansions on many target points locally. The multipole-to-local (M2L) transformation takes most of the runtime.

Treecodes do not use local expansions, and compute the effect of multipole expansions directly on target points. They thus scale as $O(N \log N)$, for N particles. The FMM has the ideal $O(N)$ scaling.

Features: Parallel, multi-GPU, with auto-tuning (did we say open source?)

We developed a novel treecode-FMM hybrid algorithm with auto-tuning capabilities, that is $O(N)$ and chooses the most efficient type of interaction. It is highly parallel and GPU-capable.

The algorithm uses a dual tree traversal for the target and source trees. See Figure below. In the initial step, both trees are formed and their root cells are paired and pushed to an empty stack.

Left — Actual performance on the GPU of three core kernels, for four different values of N . The M2P kernel of the treecode is able to deliver more flop/s on GPU than the M2L kernel of the FMM.

Above — The flow of the vortex method calculation using parallel FMM, where the domain is partitioned by an orthogonal recursive bisection and communication of the local essential tree (LET) is overlapped with the GPU calculation of the local tree. The remaining parts of the LET are calculated and updates are performed locally.

Right — This roofline model shows the high operational intensity of FMM kernels compared to SpMV, Stencil, and 3-D FFT kernels. The model is for an NVIDIA Tesla C2050 GPU, where the single-precision peak can only be achieved when special function units (SFU) and fused multiply add (FMA) operations are fully utilized.

Want more? Papers and software are online

All the codes developed in our group are free (like free beer) and open source. To download them, follow the links from our group website:

<http://barbagroup.bu.edu>

Also on the website are up-to-date bibliographic references, and papers for download. Please visit!