
ExaFMM: An open source library for Fast Multipole Methods
aimed towards Exascale systems

Lorena A Barba1, Rio Yokota2
1 Boston University, 2 KAUST

Left — The simulation of homogeneous isotropic turbulence is
one of the most challenging benchmarks for computational
fluid dynamics. Here, we show results of a 20483 system,
computed with a fast multipole vortex method on 2048 GPUs.
This simulation achieved 0.5 petaflop/s on Tsubame 2.0.

Below — Scaling on a massively parallel CPU systems is also
excellent. The plot shows MPI weak scaling (with SIMD within
each core) from 1 to 32,768 processes, and timing breakdown
of the different kernels, tree construction and communications.
The test uses 10 miilion points per process, and results in 72%
parallel efficiency on 32 thousand processes (Kraken system).

G
TC

 E
xp

re
ss

 @
 S

C
’1

1,
 N

ov
em

be
r

20
11

What’s new? An open source FMM

Want more? Papers and software are online

P2P M2L M2P
0

50

100

150

200

250

300

350

G
F

lo
ps

N=104

N=105

N=106

N=107

Left — Actual performance on the GPU of
three core kernels, for four different values
of N. The M2P kernel of the treecode is
able to deliver more flop/s on GPU than
the M2L kernel of the FMM.

M2M
multipole to multipole
treecode & FMM

M2L
multipole to local
FMM

L2L
local to local
FMM

L2P
local to particle
FMM

P2P
particle to particle
treecode & FMM

M2P
multipole to particle
treecode

source particles target particles

information moves from red to blue

P2M
particle to multipole
treecode & FMM

Results: Parallel, multi-GPU performance
Besides the results shown above, strong scaling runs on
CPUs for 10 million bodies per core have shown 93%
parallel efficiency at 2048 cores without SIMD, and 54%
parallel efficiency at 2048 cores with SIMD kernels.

Strong scaling runs on GPUs for 100 million bodies show
65% parallel efficiency on 512 GPUs, while weak scaling
runs on GPUs with 4 million bodies per GPU show 72%
parallel efficiency on 2048 GPUs.

The calculation of isotropic turbulence on a 20483 grid
(as shown in the figure above) uses 4 million bodies per
GPU on 2048 GPUs.

The same calculation using FFTW on 2048 CPU cores of
the same machine obtains 27% parallel efficinecy on 2048
cfores. The good scalability of FMMs becomes an advantage
on massively parallel systems.

All the codes developed in our group are free (like free beer) and open source.
To download them, follow the links from our group website:

 http://barbagroup.bu.edu

Also on the website are up-to-date bibliographic references, and papers for
download. Please visit!

pop
stack

split
cell

multipole
acceptance
criterion

push
to
stack

calculate
interaction

calculate
interaction

target
tree

source
tree

push root pair
to stack

Initial step Iterative step

1 8 64 512 4096 32768
0

10

20

30

40

N
procs

tim
e

[s
]

tree construction
mpisendp2p
mpisendm2l
P2Pkernel
P2Mkernel
M2Mkernel
M2Lkernel
L2Lkernel
L2Pkernel

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

16

32

64

128

256

512

1024

2048

Operational intensity (flop/byte)

A
tta

in
ab

le
 fl

op
/s

 (
G

flo
p/

s) no SFU, no FMA

+SFU
+FMA

F
as

t N
-b

od
y

(p
ar

tic
le

-p
ar

tic
le

)

F
as

t N
-b

od
y

(c
el

l-c
el

l)

3-
D

 F
F

T

S
te

nc
il

S
pM

V

single-precision peak

The fast multipole method (FMM) is a numerical engine
used in many applications, from acoustics, electrostatics,
fluid simulations, wave scattering, and more.

Despite its importance, there is a lack of open community
code, which arguably has affected its wider adoption. It is
also a difficult algorithm to understand and to program,
making availability of open-source implementations
even more desirable.

Method: Multipole-based, hierarchical
There are two common variants: treecodes and FMMs.
Both use tree data structures to cluster ‘source particles’
into a hierarchy of cells. See Figure to the right.

Multipole expansions are used to represent the effect of
a cluster of particles, and are built for parent cells by an
easy transformation (M2M). Local expansions are used
to evaluate the effect of multipole expansions on many
target points locally. The multipole-to-local (M2L) trans-
formation takes most of the runtime.

Treecodes do not use local expansions, and compute the
effect of multipole expansions directly on target points.
They thus scale as O(N log N), for N particles. The FMM
has the ideal O(N) scaling.

Right — an actual computation of a bioelectrostatics
problem, where a protein-solvent interface is
represented by a surface mesh. One molecule
needs 100 thousand triangles on its surface.

We modeled a system with more than
10 thousand such molecules—this
results in one billion unknowns!

We developed a novel treecode-FMM hybrid algorithm
with auto-tuning capabilities, that is O(N) and chooses
the most efficient type of interaction. It is highly parallel
and GPU-capable.

The algorithm uses a dual tree traversal for the target
and source trees. See Figure below. In the initial step,
both trees are formed and their root cells are paired and
pushed to an empty stack.

Features: Parallel, multi-GPU, with auto-tuning (did we say open source?)

partition domain: Orthogonal Recursive Bisection

communicate
LET with MPI my rankrank 0 rank 2 rank 3

Local Essential Tree on other processes

evaluate FMM kernels
for Local Tree on GPU

my rankrank 0 rank 2 rank 3

Local Tree
evaluate FMM kernels for remaining Local Essential Tree

update position, vortex strength, and core radius locally

reinitialize particle position and core radius every few steps

OpenMP
parallel sections

Further iterations consist of popping a pair of cells from
the stack, splitting the larger one, and applying an accept-
ance criterion to determine if multipole interaction is
valid or not. If not, a new pair is pushed to the stack.

The figure shows tree cases: the ones on th eleft and right
satisfy the multipole acceptance criterion (MAC), while
the one in the center does not and is pushed to the stack.

Above — The flow of the vortex method caluclation using parallel FMM, where the domain is partitioned by
an orthogonal recursive bisection and communication of the local essential tree (LET) is overlapped with the GPU
calculation of the local tree. The remaning parts of the LET are calculated and updates are performed locally.

Right — This roofline model shows
the high operational intesity of FMM
kernels compared to SpMV, Stencil,
and 3-D FFT kernels. The model is for
an NVIDIA Tesla C2050 GPU, where
the single-precision peak can only be
achieved when special function units
(SFU) and fused multiply add (FMA)
operations are fully utilized.

